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Abstract ─ This paper describes a parallel Model 
Order Reduction (MOR) technique for Linear Time 
Invariant (LTI) electromagnetic/circuit systems 
with sparse structure. The multi-point Krylov-
subspace projection method is adopted as 
framework for the model order reduction and a 
parallelization strategy is proposed. More 
specifically, a multi-point version of the well-
known PRIMA algorithm is proposed, which is 
parallelized with respect to the computation of the 
error between the original model and the reduced 
one. The number of moments to be matched for any 
expansion point is chosen adaptively as well. The 
numerical results show that the proposed 
parallelized MOR algorithm is able to preserve the 
accuracy of the reduced models while providing a 
significant compression and a satisfactory speedup 
with respect to the sequential one. 

Index Terms ─ Model order reduction, parallel 
computing, sparse electromagnetic/circuit systems. 

I. INTRODUCTION 
The increasing demand for performance of ICs 

pushes operation to higher signal bandwidth and 
accurate modeling of previously neglected effects, 
such as crosstalk, reflection, delay, and coupling 
becomes increasingly important during circuit and 
system simulation [1]. 

When modeling complex 3D geometries, 
Maxwell’s equations are discretized in space and 
reduced to time continuous-space discrete 
equations. Time dependence can be further 

removed by using approximation of time 
derivatives resulting in time and space discrete 
equations. This task can be addressed by means of 
numerical discretization methods like Finite 
Difference (FD) methods and the Finite Element 
Method (FEM) or integral ones as the Method of 
Moments (MoM) [2] or the Partial Element 
Equivalent Circuit (PEEC) method [3]. 
Independently of the approach, the direct 
simulation of the resulting model may be 
computationally expensive in time and memory 
storage. The generation of a compact model 
preserving the properties (e.g., stability, passivity 
and reciprocity for electrical/electronic devices) of 
the original physical system is an important step 
because it allows to use the model in a virtual 
prototyping environment, avoiding to resort to a 
physical prototype. Thus, it is possible to verify the 
correct functioning of the designed system at a 
virtual prototyping level, testing different operating 
conditions and undesired effects when linked to 
other devices. Moreover, the creation of a virtual 
prototype is definitely cheaper and faster than 
creating a physical one. 

Unfortunately, depending on the mesh of the 
discretization, the extracted model may contain 
many equations and/or variables ranging from the 
thousands to the millions. Such complex dynamical 
systems need to be simplified, while preserving the 
accuracy of their input-output behavior, in order to 
perform simulations within an acceptable amount 
of time and limited storage capacity, but with 
reliable outcome [4]. In order to speed up the 
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simulations and to save memory space, Model 
Order Reduction (MOR) techniques have been 
developed and are efficiently used to cope with this 
problem [4]. 

Model order reduction techniques aim to 
quickly capture the essential features of a model 
while keeping minimal the number of degrees of 
freedom. The reduced model has to match the 
frequency response of the original model within a 
desired error tolerance, in a prescribed frequency 
range of interest, and at the same time, has to 
preserve all necessary properties such as stability 
and passivity. The interested reader may refer to the 
“MOR Wiki” web site [5] for a list of model order 
reduction methodologies and benchmarks. 

Model reduction methods based on balanced 
truncation are very efficient for medium to large-
scale problems [6]. It is well known, that a global 
error bound for the reduced model makes the model 
reduction process automatic. Although, model 
reduction methods based on Krylov subspace and 
moment-matching are much simpler to be 
implemented and also require usually less 
computational complexity than methods based on 
balanced truncation; the most difficult task is 
choosing suitable expansion points, and in many 
cases using only an expansion point at zero is not 
sufficient for an accurate and small reduced model. 
However, how to choose proper nonzero expansion 
points and how to decide upon the corresponding 
number of moments accordingly is still an open 
problem, despite some progress as reported in [6]. 

An early method called CFH (Complex 
Frequency Hopping) is proposed in [7]. By using a 
binary search algorithm, the expansion points are 
chosen with respect to the common poles contained 
in both circles of the neighboring expansion points. 
However, the poles of the transfer function are 
computed based on explicit moment-matching; i.e., 
the moments are computed by recursive matrix-
vector multiplications, in the same way as the 
Asymptotic Waveform Evaluation method in [8]. 
Therefore, the poles computed are actually not 
accurate because of numerical instability; although, 
they would represent the actual poles if computed 
with precise arithmetic. Moreover, in order to 
compute the actual poles, higher order moments 
must be computed, and explicit moment 
computation cannot guarantee that the higher order 
moments are accurately computed, again because 
of numerical inaccuracies [6]. 

In this paper, we focus on the use of a multi-
point version of the well-known PRIMA algorithm 
[9], based on implicit moment-matching (that can 
maintain numerical stability), which is made 
adaptive and parallel by exploiting the power of 
modern multi-core processors. In particular, in 
order to obtain a reduced model with, say, a 
minimum order of reduction with respect to the 
desired accuracy, we just fix the number of 
frequency test-points in correspondence of which 
we compute the error between the dynamics of the 
original model and of the reduced one, employing 
PRIMA on those points having the maximum error 
value in a recursive way, and increasing the order 
of moments to be matched for the selected points 
when necessary. When the number of frequency 
test-points is high (which should ensure a full 
exploration of the frequency range of interest), the 
computation of the error values may be time-
consuming, mostly depending on the original 
system dimension. For this reason in this paper, 
such a computation is performed in parallel. 

Section II provides a brief review of the 
PRIMA algorithm, including the theory of deflated 
Krylov subspaces. Section III describes the 
parallelization of the multi-point PRIMA 
algorithm, providing remarks and comments on the 
adopted technique as well; several numerical results 
are presented in Section IV using different data sets 
available in public repositories. Finally, the 
conclusions are drawn in Section V and future 
perspectives are pointed out. 

II. THE PRIMA ALGORITHM 
A. Basic formulation 

Let us assume the electromagnetic/circuit 
system be represented in descriptor form as: 

� � � � � �
� � � �

 
Φ: ,

                  
Cx t Gx t Bu t
y t Lx t

� �� ��
	 ��


� �� �� �� �x t Gx� �  (1) 

with zero initial condition � �0 0x � . The matrices 
, n nC G R �� contain memory and memoryless 

elements, respectively, � � nx t R� denotes the vector 
of state variables. In a circuit environment, the 
Modified Nodal Analysis (MNA) [10] naturally 
leads to a descriptor form assuming as unknowns 
the node potentials and the currents flowing in 
inductances and voltage sources of the equivalent 
circuit. Also, n mB R �� and m nL R ��  are the input 
and output matrices, respectively. 
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The corresponding complex-valued, matrix 
transfer function in the Laplace domain reads: 
 � � � � 1H s L G sC B�� � . (2) 

The PRIMA [9] algorithm provides a unitary 
projection matrix V  (e.g., computed by the one-
side Arnoldi method, where HV V I�  with I  being 
identity matrix of appropriate dimension), and then 
the approximation � �x̂ t  can be represented as 

� � � �x̂ t Vz t� . Therefore, � �x t  can be approximated 
by � � � �x t Vz t . Here, � �z t  is a vector of length 

k nn . Once � �z t  is computed, the approximate 
solution � � � �x̂ t Vz t�  for � �x t  can be obtained. 
The vector � �z t  can be computed from the reduced 
model: 

 � � � � � �
� � � �

 
:

                  
Cz t Gz t Bu t
y t Lz t

� �� ��� 	
��


� �z t B� �z t� � � �t�Bu t�� � GzGzC
:
����� 	
������

�
		

��
				
Cz � �� �z t� � � �

�        �t
� �

� � �y t L� �  � �t� �
� �

��Lz ��
  (3) 

Besides, the reduced model preserves the main 
properties of the original system (stability, 
passivity) under some assumptions on the structure 
of the matrices C and G [9]. The reduced MNA 
matrices are: 

 ,      ,
,      .

H H

H

C V CV B V B
G V GV L LV

� �
� �

HC V CVHV CV ,HB V BHB,
HG V GVHV GV .L LVL

,  (4) 

The unitary projection matrix V of dimension n k�  
is obtained using the block-Arnoldi procedures with 
the modified Gram-Schmidt process, such that its k 
column-vectors span the Krylov subspace 

� �,lK A R  induced by the l-block moments, as the 
sequel � � � �( 1)( , ) , ,..., ,l

lcolspan V K A R span R AR A �� �

where � � 1 ,R sC G B�� �  with s C�  (complex set) 
a selected expansion point, and � � 1 .A sC G C�� � �  
 
B. Deflation of the Krylov subspace 

In the case of multiple input systems, i.e., with 
1m � , we need to use a block-version of the 

Arnoldi algorithm to compute the moments of the 
transfer function with PRIMA. Equivalently, we 
need to solve linear systems of the form AX B�  
with multiple right-hand side. 

An important aspect of block-Krylov subspace 
is represented by the possible linear dependence of 
the basis vectors. Such dependence can arise both 
in the set of starting vectors and in the following 
blocks, during the subspace construction phase: in 
the first case, linearly dependent columns of the 
input matrix B should be eliminated before starting 
the Arnoldi procedure, so that the solution of the 

linear system (which is the first moment of the 
transfer function in this case) is of full column rank, 
and this is called “initial deflation”; in the second 
case, linearly dependent vectors are detected within 
the orthogonalization process of the following 
blocks, this is reffered to as “Arnoldi deflation” 
[11]. Exact linear dependence rarely occurs in 
practical applications, on the contrary approximate 
deflation, depending on a deflation tolerance ,defltol  
is more common and may reduce the computational 
cost of the iterative procedure [11]. 

As implemented in [11], differently from the 
standard rank-revealing QR (RRQR) factorization, 
the deflation is implemented by comparing the 
norm of the last orthogonalized column with the 
initial norm of the same column: if the ratio 
between the former and the latter is smaller than 

,defltol  then, such column has to be deflated. 
Clearly, the accuracy in the reconstruction of the 
deflated systems solution depends on the choice of 

,defltol  [11]. We set 1010 .defltol ��  
Remark: Purely imaginary expansion point(s) 

(for single-point or multi-point PRIMA) is the 
common choice, since it is the response along the 
imaginary axis which is of interest for interconnect 
analysis [12]. Besides, the use of complex 
expansion points is  typically results in a 
significantly smaller state-space dimension k of the 
reduced order model, compared to the case of real 
expansion point(s), since is  can be placed closer to 
the frequency range of interest than any real one(s) 
[13]. 

However, using complex expansion points 
results in complex reduced models. Then, to 
generate a real ROM (as the original one), one can 
separate the complex projection matrix V, resulting 
from a MOR method, in real and imaginary parts to 
generate a unique real matrix V, such that: 
 � � � �   .V Re V Im V� � �� �V � � �Re V�� ��� �Re V�  (5) 

One obvious disadvantage of this approach is 
that the dimension of the resulting reduced-order 
model is doubled to 2k. Furthermore, in general, the 
projection matrix (5) is not guaranteed to have full 
column rank, and so before using (5) as a projection 
matrix, one would need to check for and possibly 
delete any linearly dependent columns of (5) [13]. 
To avoid the linear dependent columns, one can 
check whether defltol  is satisfied at each step of the 
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orthogonalization. 

III. PARALLEL, ADAPTIVE MULTI-
POINT PRIMA 

The PRIMA algorithm approximates the 
original system just locally, around a selected 
expansion point. Wide-band modeling would 
require a large number of moments to be matched 
to obtain a prescribed accuracy. Also, in some 
applications, too many derivatives need to be 
matched to obtain a sufficient accuracy in the 
frequency range of interest. Without resorting to 
higher order moments, multiple expansion points 
have been considered, so that a limited number of 
moments need to be matched on each frequency 
point. 

There have been many efforts and contributions 
in this direction: Benner, et al., developed an 
efficient MOR scheme which chooses the 
expansion points and the number of moments in a 
fully adaptive way [6]; an adaptive algorithm to 
automatically identify the expansion points and set 
the order of the model has been proposed in [1]; 
among others, Lee, et al., proposed an Adaptive-
Order Rational Arnoldi (AORA) method [14] to be 
applied to large-scale linear systems. Also, Nakhla, 
et al., in [1] used a binary search method to find 
frequency points where the ROM is computed. 

However, the choice of expansion points in the 
rational Krylov-based MOR theory, to reach a 
desired approximation of the ROM with a 
minimum order of reduction, while keeping the 
simulation time as small as possible, is still an open 
problem. 

In order to retain a small number of expansion 
points and a limited number of moments for each of 
them, trying to catch just the dominant poles of the 
transfer function describing the input-output 
behavior of the original full order model, we 
propose a new method, with the following 
motivations. 
1. We assume to know the starting and ending 

points of the frequency range of interest and the 
matrices describing the LTI, SISO or MIMO 
system; no information is available about the 
original system in terms of the exact location of 
the dominant poles of its transfer function, or 
about stability properties. Since the 
approximation of the ROM, with the desired 
accuracy over the frequency range of interest is 

the main goal in the MOR field, one can 
recursively check the error between the 
dynamics (accounting for modules and phases) 
of the original model and that of the currently 
computed ROM for a high number of 
distributed frequency test-points FSn  (FS 
stands for Frequency Samples), applying 
PRIMA (thus, extracting the projection matrix) 
on those points showing the maximum error 
value among all the others. This way, we would 
avoid heuristic searching method for the 
expansion points. Obviously, as the number of 
distributed points tends to infinity, then there 
will be retained a sufficient number of points 
which make sure the accuracy is reached in all 
the frequency range, matching just one or very 
few moments on each selected point with the 
use of PRIMA. But this has the big drawback 
of the intractable simulation time, when 
computing the original model’s transfer matrix 
in correspondence of each test-point, and 
PRIMA (both these operations involve the 
solution of sparse linear systems), mostly for 
very large size matrices. 

2. To avoid the choice of an intractable, high 
number of frequency test-points to be checked, 
we select a reasonable number of linearly 
distributed points in the range of interest, in 
correspondence to which the error has to be 
computed. Then, the frequency sample with the 
maximum error value is selected as an 
expansion point and a satisfactory solution of 
the transfer function is obtained on it, executing 
PRIMA with matching just one moment. Since 
an acceptable solution can be achieved only in 
the retained frequency samples used as 
expansion points, whilst this is not the case for 
frequencies belonging to the interval between 
two consecutive test-points, we can think of 
increasing the number of the moments in an 
adaptive way: let us assume the current 
maximum error of the dynamics is in 
correspondence to the (angular) frequency 
point iω which lies between 1iω � and 1,iω �

such that � �1 1     i i iω ω ω� �  is a subinterval of the 
whole range and they are linearly spaced. Then, 
PRIMA will be computed on ,i is jω�  with 

1,j � �  matching just the first moment on 
.iω  In the next step, we check the error on both 
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the middle points 1,i iω �  of the left-subinterval 
� �1   i iω ω�  and , 1i iω �  of the right one � �1  :i iω ω �  
until the error of at least one of the mid points 
is greater than the desired tolerance, we 
increase iteratively the number of moments to 
be matched at .iω  We choose to check the 
middle points inside each subinterval 
� �1 1     ,i i iω ω ω� �  starting from the idea adopted 
in [6] for the adaptive choice of the moments, 
where the increasing of moments depends on 
the accuracy (error check) on points far away 
from the currently selected one: in our case, the 
current point is iω  and the farthest points (from 
it) are 1,i iω �  (in the left-subinterval � �1  ) i iω ω�  
and , 1 i iω �  (in the right one � �1  ),i iω ω �  
respectively. Nevertheless, as pointed out in 
[6], it is not ensured that the farthest point 
exhibits the maximum error value, so that the 
choice of a “sufficiently” high number of 
linearly distributed points to be checked in the 
range is justified: as this number increases, the 
distance between the currently processed 
frequency point iω  and the farthest points in 
the left and right subintervals 1,i iω �  and , 1i iω � , 
respectively, decreases; thus, these mid points 
are “close enough” to iω  such that there may 
be also a good accuracy on them matching 
eventually few moments on ,iω  and the error 
check on them as farthest points is useful in 
order to accurately reproduce the dynamics on 
subintervals between consecutive test-point, as 
well. In Section IV, numerical results will be 
provided, which qualitatively relates the 
selected number of linearly distributed points 
for the error check and the resulting order of 
reduction. 

3. Even with a moderate number of distributed 
frequency points to be checked, the 
computational time of the original transfer 
function for each point may be expensive, since 
it requires FSn  solves with � �is C G� , 
according to (2), and the CPU time could 
increase with the size of the initial model. 
PRIMA also needs the inverse of the same 
matrix, to compute the moments. To overcome 
this limitation, we divide the initial frequency 
range into a certain number of subintervals, 

delegating the search for expansion points and 
the computations of PRIMA to different 
available parallel processors, as described 
below. 
Briefly, our algorithm is based on the recursive 

exploration of the frequency range of interest and 
additional expansion points are identified through 
the exploration step, by comparing the frequency 
response of the original system and the reduced 
one. When the size of the modeled systems exceeds 
few thousands, the computation of the frequency 
responses and that related to the moment(s) with 
PRIMA are typically time consuming. 

As a preliminary step, we select the desired 
tolerance tol for the accuracy of the ROM’s 
dynamics and a number of FSn  frequency samples, 
linearly distributed in the range of interest, over 
which the error has to be checked and PRIMA has 
to be applied, when necessary; successively, we 
divide the range in a certain number of subintervals, 
each of them containing an equal number of 
expansion points. The number of subintervals is 
equal to the number of available parallel processors, 
and we parallelize the executions on the multiple 
subintervals, exploiting the power of modern multi-
core processors. We assign a subinterval to each 
processor (such that the selected processors will 
cover all the subintervals, the union of which forms 
the entire frequency range), resulting in an 
“embarrassingly” task parallel execution (no 
communication required between the operations to 
be computed on each processor). 

However, the efficiency of a parallelized 
method depends on some factors. First of all, the 
sequential part of the algorithm could slow down 
the overall performance of the algorithm, 
dominating over the parallelized one (Amdahl’s 
law [15]). Also, when working with very large data 
sets, the data transfer time and memory demands 
could exceed that needed for the real computation, 
i.e., when the workload for each parallel processor 
is not “high enough” to overlap the data transfer and 
memory accesses (to request data from the 
hierarchical memory and retrieve it from the CPU, 
where the operations are executed). Besides, 
another factor causing the slowdown of the parallel 
performance could be the data bus contention, when 
each processor requests data from the RAM 
(mainly, when the data cannot be entirely loaded 
into fast, private memory blocks, namely the 
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cache), resulting in a waste of time for the 
processors waiting for data, which travels in a bus 
eventually shared by every one of them before 
proceeding with the computation. We will examine 
these factors in the section on numerical results. 

Assuming initially to work with a single 
processor, then there is just one interval, which is 
identical to the original frequency range. As starting 
point, we compute the frequency response for all 
the FSn  points, storing these values (for SISO 
systems) or matrices (for MIMO models) in 
memory. Afterwards, we use PRIMA on the lowest 
frequency point 0ω  of the range, matching just the 
first moment, and extracting the first projection 
matrix. What follows is a further check on the 
farthest point from 0ω , which lies in the middle of 
the right subinterval � �0 1   ,ω ω  increasing the order 
of the moments at 0ω  if the error in the midpoint of 
this subinterval is larger than the tolerance tol.
(Note: when increasing the moments and the 
selected point is either the lowest or the highest one 
in the frequency range, we just consider the right 
subinterval or the left one, respectively.) We define 
the (relative) error as: 

� � � �
� �

,
H s H s

err
H s

�
�

� �H s�  (6)

where � �H s  and � �H s� �H s�  are the transfer functions 
of the original model (already available since 
previously computed) and of the ROM (which 
changes each time a new expansion is done), 
respectively. 

It is worth noticing that the error (6) is a matrix, 
where the (i, j)-th element corresponds to the error 
of the dynamics of the (i, j)-th transfer function; in 
the multi-point approach followed in [1], the error 
was computed as a RMS error, an average among 
all the error values of each ports of the model; thus, 
in the case that all the ports but one show an error 
smaller than the desired tolerance, the final RMS 
error may be smaller, thus the tolerance too, and 
PRIMA would not be computed on the processed 
frequency point and consequently the 
approximation in that point or interval was 
considered accurate enough but it is not. Instead, we 
computed the error as (6), accounting for the error 
value for each (i, j)-th transfer function, discarding 
the processed frequency point just in case all the 

ports have a satisfactory accuracy. This error 
formulation is suitable for both SISO and MIMO 
systems. 

The next step is the computation of the error for 
each distributed frequency sample: the one 
exhibiting the maximum value among the others is 
selected, and a projection matrix is extracted using 
that frequency sample as expansion point. Again, 
we do a further check on the mid points in its left 
and right sub-intervals, increasing the order of the 
moments when required. For each (iteratively) 
retained frequency point, the corresponding 
obtained projection matrix is block-column 
concatenated with the previous ones. The 
computation of the error is repeated for the 
remaining points in the frequency interval, and as 
before, other points may be retained and used as 
expansion points until for all the distributed points, 
the error is smaller than the a-priori fixed tolerance 
tol. 

Instead, when using procn  processors (parallel 
workers), thus having procn  subintervals each of the 

with FS

proc

n
n  sample points, each worker uses the 

same approach as before and will only care about 
its own subinterval, initially applying PRIMA at the 
lowest point of it, eventually increasing the 
moments to be matched, and iteratively selecting 
the other points exhibiting the maximum error 
value repeating the computation of PRIMA until 
the desired accuracy is satisfied. This parallel 
approach is based on the independence of each 
subinterval on the other ones, but we will see that a 
little drawback could arise, in terms of redundancy 
of some retained expansion points. The pseudo-
code of the parallel and adaptive multi-point 
PRIMA is shown in Algorithm 1. 

The algorithm receives as inputs the matrices of 
the original system in the general form (1) 
� �, , , ,G C B L  the starting (fStart) and ending (fStop)
points of the frequency range of interest, the 
number of points to be linearly distributed ( ),FSn
the desired tolerance (tol) for the accuracy of the 
ROM and the number of processors ( )procn  to run 
in parallel (which will be equal to the number of 
subintervals). The projection-matrix finV  is 
produced as output. 
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It is worth noticing, that in order to decrease the 
time needed for generating higher-order moments 
(higher than 1), we estimate the increased-order 
moment (with the higherMomPRIMA function in 
Algorithm 1) only with respect to the previously 
computed one (selecting from the current projection 
matrix iV  the moment corresponding to lastMom). 

Regarding the final projection matrix ,finV  it is 
not unique, as a basis for the rational Krylov-
subspace. In fact, we start to approximate the 
original transfer function from the initial point 

� �0 min ,ω subInt�  that in the case of a unique 
interval (sequential execution with one processor), 
it is the closest to the DC component, but it can be 
chosen differently. The choice 0 0ω �  (or 0 0)ω   
is widely used as it often delivers good results in a 
large neighborhood of the low-frequency part of the 
spectrum, including the steady state [16]. However, 
numerous simulations have shown that a random 
selection of the initial value for each subinterval 
neither affects the convergence nor the overall CPU 
time of the algorithm, nor the accuracy of the 
ROM’s dynamics. 

Figure 1 may better clarify the search for and 
selection of expansion points, for both the 
sequential and the parallel executions, as the 
algorithm proceeds. 

For instance, assuming we linearly distribute 
7FSn �  frequency test-points (from 0ω  to 6ω ), the 

sequential algorithm (top) computes in step 1 the 
first moment with PRIMA (filled circle) on the 
lowest frequency point 0ω . Then, it calculates the 
error in the point 0,1ω  (the midpoint in the interval 

� �0 1  ),ω ω  where 0ω  and 1ω  are two consecutive 
points, and employs PRIMA to catch higher-order 
moments if the error in 0,1ω  is greater than the 
tolerance (in this picture we do not show the 
adaptivity for the computation of higher-order 
moments, for simplicity). In step 2, the algorithm 
evaluates the error values on each test-point and 
select that with the maximum value (empty circle, 
in this case in correspondence to 4ω ), and in step 3 
PRIMA is executed matching the first moment at 

4ω , and eventually computes those with higher 
order. The algorithm stops when the error values on 
all the test-points are less than the desired tolerance. 
Clearly, the method will not make the expansion on 
all the test-points, since a global accuracy in the 
entire range will be obtained by matching the 
moments of the original transfer function at 
different, selected expansion points. 
 

 
 
Fig. 1. Example of the sequential execution of the 
search method within the entire frequency range 
(top) and the parallel version with two 
processors/subintervals (bottom). 
 

Instead, for the parallel version with two 
processors (bottom of Fig. 1), the method divides 
the frequency range into two subintervals (SubInt1 
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and SubInt2), and then proceeds with the same 
criterion of the sequential one. One can easily note, 
that there may be redundancies in executing 
PRIMA at those points that are “shared” between 
two consecutive subintervals (in Fig. 1 it is 3 ),ω  but 
this redundancy can be eliminated with the 
deflation rule presented in Section II. However, 
other redundancies could not be deleted by the 
deflation, e.g., when the parallel algorithm (relying 
on the independence of the subintervals) retains two 
distinct points, which are sufficiently close in the 
entire range but are parts of two (distinct)
consecutive subintervals. We will see that 
increasing the number of parallel workers (thus, the 
number of subintervals) could result in a slight 
augmentation of the final order of reduction of the 
ROM, but also with a better accuracy, which 
becomes much more satisfactory than that fixed a 
priori, and most important, with a gain in the CPU 
time execution. Nevertheless, the problem of 
obtaining a ROM with the desired accuracy is 
resolved in any case. 

As a measure of the parallelization, we refer to 
the speedup factor: 

� � � �
*

,seq
proc

par proc

t
SP n

t n
� (7)

where *
seqt  is the execution time of the fastest 

sequential program solving the same problem. 
Moreover, as a measure of utility of the selected 
number of processors that work in parallel, we 
define the efficiency of the parallelization: 

� � � �
*

,seq
proc

proc par proc

t
Eff n

n t n
�  (8) 

where procn  is the number of parallel processes 
[17]. 

Another common factor used in the field of 
parallelization of the execution is the strong 
scalability. Fixing the problem size (i.e., the 
dimension n of any data set), a program scales 
linearly if the speedup factor is equal to the number 
of parallel processes used, procn .

Evidently, optimal (linear) scaling is attained 
when the speedup factor is equal or close to procn
(or, stated in another way, the efficiency stays close 
to one) and therefore, strong scaling results can be 
visually inspected by plotting the speedup factor (or 
the efficiency) versus the number of parallel 

processes .procn

A. Parallelizing the computation of multiple 
expansion points 

There are some different ways to parallelize the 
computation of time-expensive routines. From the 
hardware point of view, one can use either a local 
multi-core desktop or a cluster of computers, called 
nodes, linked in a computer network or a 
combination of both of them (hybrid distributed/ 
shared memory-based implementations). On the 
other hand, there are several software environments 
allowing high performance, parallel programming, 
such as the MATLAB(R) Parallel Computing 
Toolbox (PCT) for local desktop, and the 
MATLAB Distributed Computing Server for 
cluster workstations. Another very popular 
platform is the OpenMP, an API that supports 
multiplatform shared memory multiprocessing, 
which together with MPI (Message Passing 
Interface, a computer communications protocol for
parallel computation) can be used for cluster 
computers (an example of the use of this latter 
combination was done by Ciuprina, et al., in [18], 
where a MOR technique for multiple expansion 
points is presented). 

For our numerical results, we used the 
MATLAB Parallel Computing Toolbox. It allows 
to solve computationally and data-intensive 
problems using multi-core processors, GPUs, and 
computer clusters. High-level constructs-like 
parallel for-loops, special array types, and 
parallelized numerical algorithms let one 
parallelize MATLAB applications without 
CUDA(R) (Compute Unified Device Architecture, 
a parallel computing platform and programming 
model created by NVIDIA) or MPI programming. 
The toolbox provides a maximum of twelve parallel 
“workers” (MATLAB computational engines) to 
execute applications locally on a multi-core 
desktop. With slightly changing the code, one can 
run the same application on a computer cluster or 
on a grid computing service. 

More in detail, we used the parallel for-loop 
(parfor), instead of the standard for loop, in the 
computation of the frequency responses of the 
original system (in Algorithm 1), as well as in the 
generation of the projection matrices for each 
subinterval (with the function parSubInt described 
in Algorithm 2). It runs loop iterations in parallel on 
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a pool of parallel workers using the parfor language 
construct, allowing several processors to execute 
individual loop iterations simultaneously. 
Restriction on parallel loops is that no iterations be 
allowed to depend on any others (in our case, each 
processor computes the original frequency 
responses at a certain number of frequency samples 
and works on its own subinterval, resulting in what 
is called an embarrassingly parallel problem, since 
there is no communication between each worker); 
besides, the body of the parfor has to be a 
computationally intensive routine, such that its 
simulation time far exceeds the one needed for the 
transfer of very-large data from the client to each 
workers, and vice versa. 
 

 

The first step is to run a pool of procn  MATLAB 
sessions for parallel computation, with the 
command matlabpool open ,procn  which connects 
the pool to the client. Then, to see the benefit of the 
parallelization, we can run the sequential algorithm, 
i.e., calculating the frequency responses for all the 

FSn  samples in a sequential fashion and working on 
the original frequency range and compare the 
obtained simulation time with that from the parallel 
version, evaluating the speedup factor with (7) and 
the efficiency of the parallelization with (8), as the 
number of available parallel processors procn  
increases, to analyze the scalability of the method. 
 

IV. NUMERICAL EXPERIMENTS 
The proposed algorithm is implemented in 

MATLAB r2012b, running on a shared-memory 
local desktop equipped with an Intel i7 Quad-Core 
Processor, CPUs operating at 3.50 GHz, with 16 
GB of RAM available, on a Windows7 OS and 
setting the priority of the MATLAB process(es) to 
Real-Time, the highest one (in the Task Manager). 
We provide numerical results of eight sparse data 
sets, some coming from the Max Planck Institute of 
Magdeburg, others free downloadable from the 
SLICOT benchmarks ([19]) and from the Joost 
Rommes’ homepage ([20]). We set a tolerance 

210tol ��  for all the data sets, which is considered 
reasonable for engineering applications (it can be 
changed); the number of linearly distributed 
frequency test points was set to 96.FSn �  

Figure 2 shows magnitude, phase and error 
spectra of the transfer function 1,4H  of an 
interconnect model with 980n �  internal state and 

4m �  inputs and outputs, of both the original 
system evaluated in 2000 frequency points (as for 
all the other data sets) and the reduced model of 
order 32,k �  obtained with the sequential 
multipoint PRIMA algorithm. For this data set, the 
algorithm retained five expansion points (which are 
plotted in the module picture, translated in angular 
frequencies). Figure 3 shows the same dynamics of 
the previous model (we do not provide the phase 
dynamic, it is identical to that of Fig. 2), obtained 
from the parallel execution with two processors. As 
said in the previous section, one can note that the 
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number of retained expansion points is increased 
(eight in this case), resulting in a slightly bigger 
order of reduction 44.k � For this model, this has 
also resulted in a higher accuracy of the final ROM, 
as one can see in the picture of the error. 

Fig. 2. Magnitude (top), error (middle) and phase 
(bottom) spectra of the transfer impedance of 1,4H
an interconnect model with dimension 980,n �
running the sequential method. 

Fig. 3. Magnitude (top) and error (bottom) spectra 
of the transfer impedance 1,4H  of an interconnect 
model with dimension 980,n �  running the 
parallel method with two processors. 

Figure 4 plots magnitude, phase and error 
spectra of the transfer function 4,3H  of an 
interconnect model of dimension 13309n �  and 
with 8m �  inputs and outputs, with a ROM of 
dimension 246,k �  retaining thirteen expansion 
points with the sequential execution. Figure 5 
shows magnitude (top) and error spectra (bottom) 
of the same interconnection of Fig. 4, obtained with 
two parallel processors, resulting in an order of 
reduction 256k �  with sixteen retained expansion 
points. Comparing the error plots, one can note that 
for this interconnection, the parallel method did not 
result in an improvement of the accuracy, since 
there were few redundancies of the retained 
expansion points as compared to the sequential 
case. Indeed, in the sequential execution, the 
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algorithm selected points quite scattered on the 
frequency axis, such that with the parallel version 
each subinterval showed a bigger degree of 
independence of the other ones, compared to the 
model with 980.n �  
 

 

 

 
 
Fig. 4. Magnitude (top), error (middle) and phase 
(bottom) spectra of the transfer impedance 4,3H  of 
an interconnect model with dimension 13309,n �  
running the sequential method. 

 

 
 
Fig. 5. Magnitude (top) and error (bottom) spectra 
of the transfer impedance 4,3H  of an interconnect 
model with dimension 13309,n �  running the 
parallel method with two processors. 
 

Finally, Table 1 provides for each data set the 
size  of the original model and the number of 
inputs/outputs m  (the data set with dimension 

40337n �  has two inputs and just one output), the 
simulation time results seqt  of the sequential version 

and 2 ,part  4part  and 8part  of the parallel one with 2, 
4 and 8 parallel processes, respectively, all in 
seconds (to analyze the strong scalability of the 
algorithm), Speedup (SP) and Efficiency (Eff) of 
the parallelization for each number of used 
processes; the last columns reports the order ,seqk  

2 ,k  4k and 8k  of the reduced models resulting from 
executing the sequential algorithm and the parallel 
with 2, 4 and 8 processors, respectively. 
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Table 1. Table of results: 0.01,tol � 96,FSn �
2,procn � 4 and 8, respectively (all times are in 

seconds) 

A. Consideration on the parallelization 
In this subsection, we describe the CPU 

simulation times obtained from the parallelization 
of the execution done on the multiple subintervals, 
using respectively 2, 4 and 8 cores, compared to the 
sequential one.

In Table 1, it can be observed that the speedup 
factor (and then the efficiency, too) in the case of 
two parallel processes is significant for almost all 
the data sets, but decreases as the number of 
involved parallel processes rises; thus, it seems the 
strong scalability of the algorithm is not satisfied, 
i.e., when increasing the number of available 
parallel processors, the efficiency of the 
parallelization being close to 1. The slowdown 
mostly characterized the cases with four and eight 
parallel processes. The cause was not the 
(unavoidable) sequential part of the algorithm 
(since each subinterval works independently of the 
others, the sequential part mainly characterizes the 
final re-orthogonalization in Algorithm 1), but an 
unbalanced workload issue and the way the data are 
made available to each parallel workers before 
starting the computation on them. 

More in detail, using a shared-memory multi-
core platform, when calling for, say, two (physical) 

workers core0 and core1 for the parallelization
( 2),procn �  then having two subintervals, the 
memory demand increases (each core needs to 
retrieve data to/from the hierarchical memories), 
then there is a data-bus contention: the data from 
the main memory pass through the bus and core0 
(or core1) receives them, and thus starts the 
computation. After core0 (or core1) receives the 
data, the other worker can then receive the same 
data, and starts its processing. The waiting time for 
the second processors to receive the large size data 
can slowdown the overall parallel execution. And 
the higher the number of parallel workers 
competing for the data-bus is, the more the time is 
wasted in the waiting process. Mostly, during the 
computation of a parallel task, if the amount of 
arithmetic operations cannot be entirely performed 
in one pass (i.e., when the cache available for each 
core cannot accommodate all the needed data), then 
the memory demands can be more expensive. 
However, we experienced this problem mostly 
when analyzing dense matrices, for which the data 
movement was more dramatic, as the size of the 
original problem increases. 

Regarding the simulations with eight parallel 
processes, efficiency-diminishing was the lack of 
physical computational resources, namely the 
cores. Indeed, we ran simulations with eight cores 
thanks to the HyperThreading(R) technology, 
which our computer is equipped with. It allows half 
of the cores to only exist in a virtual way (there are 
eight logical cores, but just four are physical); thus, 
there are not sufficient physical hardware resources 
on our computer and the memory bandwidth is 
insufficient to provide all required data on time. 

Even though we experienced this loss of 
efficiency, there are remedies. To limit the data-bus 
contention, one can use distributed-memory local 
desktop, where each core has its own main memory, 
and thus, a private bus which links together these 
two components. Of course, the communication 
between processes is more sophisticated, but for 
this embarrassingly parallel problem, which does 
not need inter-processes exchange of data, it may 
be suitable. 

Using such a distributed architecture, we can 
previously send just once the data describing the 
original model (1), and the related portion of 
frequency test-points (the subinterval). After the 
desired tolerance is satisfied in each subinterval, 

12 ACES JOURNAL, Vol. 30, No. 1, JANUARY 2015



each core needs only to send the computed 
projection-matrix to the client, which gathers these 
pieces of information and performs the last 
orthogonalization. One can also use clusters and 
network workstation, which nowadays are quite 
available to access to. 

The last data set, instead, shows a zero value for 
the speedup with two processes, meaning the 
sequential version was at least as fast as the parallel 
one. This was due to an unbalanced workload issue. 
In Figs. 6 and 7, we can see how the retained 
expansion points are located along the angular 
frequency axis (horizontal axis). From the 
sequential algorithm (leftmost picture), most of the 
points were located on the left-half of the entire 
frequency range, and in those points a high number 
of moments were matched. 
 

 

 
 
Fig. 6. Retained expansion points by the sequential 
algorithm (top) and by the parallel one with 2 
processors (bottom), respectively, for the model 
with dimension 40337.n �  
 

 

 
 
Fig. 7. Retained expansion points by the parallel 
algorithm with 4 processors (top) and with 8 
(bottom), respectively, for the model with 
dimension 40337.n �  
 

Then, when we divide the range into two 
subintervals, operating on them in parallel (second 
plot from left in Figs. 6 and 7), the processor 
responsible for the left subinterval had the biggest 
workload, in terms of the number of retained 
expansion points and that of matched moments for 
each point, such that the other processor, which 
ended before its execution, remained in the idle 
state until the operations on the other subinterval 
stopped. Thus, the slowdown was also caused by 
the slowest processor execution (with the biggest 
workload). 

Indeed, the retained expansion points on the 
leftmost subinterval was characterized by the 
highest number of matched moments (computed by 
PRIMA), such that the processors working on the 
other subintervals had to wait until the slowest 
execution was ended, which constituted an upper 
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bound for the speedup. However, as the number of 
parallel processor increases (second picture from 
right and the rightmost one), it seems that the final 
retained points become distributed on the entire 
range in a more “balanced” way, as the workload of 
each processor, which determines a better time 
performance. With four parallel processes, the 
biggest waiting-time, characterizing the processor 
with the biggest workload which is also the slowest 
one, becomes smaller than that obtained from two 
processors, due to a decreasing of the workload for 
each core (fewer test-points to analyze), resulting in 
a greater speedup and efficiency factors (see the 
fourth last, third last and last row of Table 1), and 
most important in a significant reduction of the 
simulation time. With such a parallel method, it is 
difficult to statically balance the workload to each 
processor, since we have initially assumed we do 
not know how the dynamics of the interconnections 
evolve in the frequency domain, then where the 
expansions with PRIMA will be executed. 
Concluding, we recall that as the number of 
workers increases (thus, the number of independent 
subintervals), the redundancies, the number of 
retained expansion points, and thus, the final order 
of reduction increase, even with a greater speedup 
of the execution; but the obtained ROM may be a 
bit more expensive to be simulated by a further 
analysis. As previously said, there is a compromise 
between the CPU generation time of the ROM and 
its order of reduction. However, when the data set 
involved in the operations has a very-large size, the 
work-load increases, then working with parallel 
processes provides benefits in time performance. 

Besides, when running the algorithm in the 
sequential mode, some operations (e.g., the 
backslash operator in solving a linear system of 
equations) exploit the implicit parallelism which 
the common multi-threaded computers are 
equipped with; instead, when calling the pool of 
parallel processes with MATLAB, with an explicit 
parallelism, each of them run in single-thread 
mode, giving rise to another factor which slightly 
limited the execution time of the parallel algorithm. 
But it is the case just for the factorization of large, 
sparse matrices with small dense sub-matrices, 
which takes advantage of the multi-threaded BLAS 
and LAPACK routines, e.g., with the multi-frontal 
method, originally developed by Davis [21]. This is 
the reason why we decided to dedicate our attention 
to sparse datasets, which BLAS is not optimized 

for. In fact, we also tested our parallel algorithm for 
dense models, and the time for the decomposition 
almost doubled in all the cases because of the 
single-thread mode. Again, this single-thread 
limitation can be avoided working with a parallel 
computing hardware/software environment, which 
supports a hybrid distributed/shared-memory 
architecture. Thus, very-large sparse matrices can 
benefit from this explicit and implicit parallelism, 
as well as one can use this method for full matrices 
too. 

Another viable option is represented by 
Graphics Process Units (GPUs), but unfortunately 
MATLAB does not allow to work on it with sparse 
datasets. Besides, the use of a GPU seems to be not 
useful in this work, since it is characterized by 
having hundreds of dedicated processing units, 
which translates into hundreds of frequency 
subintervals. Then, as said before, this would imply 
more redundant, expansion points, resulting in a 
useless big size of the reduced model. Of course, 
scalability is an important requisite to be satisfied 
in a parallel algorithm, but it strictly depends on the 
application and in many cases it is difficult to 
achieve because of the problems one can easily 
meet, such as data communication and the 
diminishing of the workload for each processor, as 
the number of parallel processes increases. 

It is also true that, since time performance was 
an equally important requisite in this work, together 
with the way the method searches for expansion 
points, we should had implemented the codes with 
a more suitable programming language, such as 
MPI or Pthread, which have more control on the 
parallel processes and allow different level of 
parallelization with distributed memories. 

We would remark that, since there are no 
established methods to search for suitable 
expansion points in Krylov-based MOR in an 
adaptive way, the other strong point of this work 
was the full exploration of the frequency range, 
which is obviously time-consuming for very-large 
size datasets; thus, using a moderate number of 
parallel processors, one can achieve speedup with 
respect to a sequential search, as one can infer from 
Table 1, avoiding too many redundancies and a 
high order of reduction. 

Lastly, from empirical results, we experienced 
that the selection of 96FSn � test-points, for the 
check of the error, was high enough to reach the 
desired accuracy on the whole frequency range. 
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Considering the sequential version of the algorithm, 
then with one interval, we noted a further tradeoff 
between the selection of the number of frequency 
test-points FSn  and the order of reduction k of the 
final ROM, keeping constant the desired accuracy 
tol. 

When increasing ,FSn  a higher number of test-
points are available. It translates into a smaller 
distance between two consecutive points. Thus, 
higher-order moments may be no longer needed to 
be computed for a selected frequency point iω  
(exhibiting the maximum error in the current step 
of the algorithm), since both its neighbor 1,i iω �  and 

, 1i iω �  are close enough to it and their error values 
are likely less than tol, even with few moments 
matched when making the expansion in iω  with 
PRIMA. Besides, it translates into an eventual 
smaller order of reduction k, since just the 
necessary moments are computed for each point, 
thanks to a more complete exploration of the entire 
frequency range of interest, without the need to 
recur in the computation of higher-order moments. 
However, we have seen that with the parallel 
execution, a greater accuracy (smaller error 
magnitudes) may be reached due to eventual 
redundancies, so that there may be no need to 
further increase .FSn  

On the other hand, decreasing FSn  below a 
certain threshold may not ensure that the desired 
accuracy will be reached in all the frequency range, 
since the adaptivity of the moments, computed at a 
frequency point iω , could fail in reproducing the 
evolution of the dynamics far away from iω . We 
experienced that for the case with 48FSn �  selected 
(linearly distributed) frequency test-points, for the 
data set with 40337n �  the sequential algorithm, 
running on the entire interval, was not able to 
satisfy the accuracy in all the frequency range; i.e., 
for how we structured the search for the frequency 
points to be retained for the expansion with 
PRIMA, when choosing a small ,FSn  clearly the 
dinstance between two consecutive test-points 1iω �  
and iω  increases, compared to the case 96.FSn �  
Assuming iω  error value among the others, and 
considering just the left subinterval � �1   ,i iω ω�  if we 
increase the order of moments until the error in the 
mid-point 1,i iω �  is less than the tolerance, the 

desired accuracy is not ensured to be reached in the 
whole subinterval 1,   i i iω ω�� �� �  (e.g., in the case of 
presence of module peaks in that range), as stated 
in the motivation of the selection of a “relatively” 
high number of .FSn  But as said before, as we 
increase the processors and then the number of 
independent subintervals, redundancies occurred 
and the accuracy increased, satisfying the tolerance. 
From all our simulations, 96FSn �  was always high 
enough to reach the desired approximation. 
 

B. On the usefulness of multiple expansion 
points 

In this section, we want to show that the higher 
the number of involved expansion points is, the 
higher the ensured accuracy in a wide range is. We 
recall that, the task of reducing a dynamical model 
while matching a number of moments (and/or the 
Markov parameters) about a point 0s can be directly 
interpreted from a system theoretical point of view 
and employed to describe the similarity between the 
original and reduced models based on the following 
facts [16]: 
� With 0 ,s  the reduced and original model have 

the same DC gain, and steady state accuracy is 
achieved. 

� Small values of 0s  result in a reduced model 
with a good approximation of the slow 
dynamics. 

� Large values of 0s  (and/or matching the 
Markov parameters) result in a reduced model 
approximating the system frequency response 
at high frequencies. 

� When matching some of the moments about 
different frequency points, a better 
approximation on a wider frequency band or on 
a specific frequency band of interest can be 
achieved. 

Besides, choosing a purely imaginary expansion 
point leads to very good local approximation and to 
a very slow convergence at all frequencies away 
from 0.s  Even though these facts give an idea on 
the choice of the expansion points, no specific value 
of 0s  can be derived based on them [16]. 

Here, we show that, for a test data set, it is not 
possible to reach the desired accuracy in all the 
frequency range of interest, when making the 
expansion on a single frequency point and 
increasing the order of moments to match. We 
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executed PRIMA on a dense data set with 
dimension 980n �  and number of inputs 8,m �
making the expansion in the middle point 

� �
0( )2

stop startω ω
ω

�
�  of the frequency range, and 

increasing the number of moments until the 
frequency errors, computed in both the starting and 
ending frequency points (farthest points from 0 ),ω
are smaller than the fixed tolerance 0.01:tol �
even matching 123 moments on the mid point, 
obtaining a ROM of order 984,k �  which is greater 
than the initial dimension, the accuracy on the 
lowest frequency point was still unacceptable 
(whereas, with our multipoint algorithm, we 
satisfied the tolerance with an order of reduction 

576k �  in the whole range. The order of reduction 
was relatively high since the frequency response of 
the model is highly resonating). Figure 8 shows a 
zoom of the module and error spectra of the data 
sets (8-1) interconnection. 

Fig. 8. Zoom of magnitude (top) and error (bottom) 
spectra of the transfer function 8,1H of an 
interconnect model with dimension 980.n �

C. Accuracy evolution plots for a test data set 
Lastly, in Figs. 9-22 we show how the accuracy 

of the ROM evolves according to each step of the 
algorithm, when it runs sequentially (avoiding to 
retain redundant expansion points), thus, only 
considering the entire frequency range without 
splitting it in subintervals, while a new expansion 
point (exhibiting the maximum error value) is 
adaptively retained and added to the previous ones 
and higher-order moments are eventually matched 
as well. This was done to provide a correlation 
between a, say, minimum number of retained 
expansion points and the location of the peaks of 
the module dynamics, related to the dominant poles 
[22] of the original system. We show the plots of 
the (1-1) interconnection of the SISO model with 
dimension 6134.n �

As one can see from Fig. 22, the retained 
expansion points (“Exp.Pts” in the legend) for this 
SISO model are those in proximity of most of the 
module peaks (e.g., resonances and anti-resonances 
characterizing the impedance or admittance of an 
RLC interconnection in the related Bode diagram), 
which can be related to the dominant poles of the 
dynamical system [22]. However, for MIMO 
systems this relationship is less explicit (see the 
module plot of Fig. 2), due to (eventual) different 
behaviors among all the interconnections of the 
transfer function, in the case an expansion point 
could be retained to reach a local accuracy for an 
interconnect, whereas it was useless for another 
one. 

Fig. 9. Accuracy evolution as additional moments, 
computed in different retained expansion points 
( ),is  are added to the currently approximated 
transfer function for the model with dimension 

6134:n �  first moment matched at the expansion 
point 2

1 .2 10s j π ��
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Fig. 10. Second moment matched on the expansion 
point 2

1 .2 10s j π ��  
 

 
 
Fig. 11. First moment matched on the expansion 
point 2

2 2 9.791 .0s j π ��  
 

 
 
Fig. 12. Second moment matched on the expansion 
point 2

2 2 9.791 .0s j π ��  

 
 
Fig. 13. Third moment matched on the expansion 
point 2

2 2 9.791 .0s j π ��  
 

 
 
Fig. 14. First moment matched on the expansion 
point 9

3 2 1.5510 .s j π�  
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Fig. 15. Second moment matched on the expansion 
point 9

3 2 1.5510 .s j π�

Fig. 16. Third moment matched on the expansion 
point 9

3 2 1.5510 .s j π�

Fig. 17. First moment matched on the expansion 
point 9

4 2 2.8110 .s j π�

Fig. 18. Second moment matched on the expansion 
point 9

4 2 2.8110 .s j π�

Fig. 19. Third moment matched on the expansion 
point 9

4 2 2.8110 .s j π�

Fig. 20. First moment matched on the expansion 
point 9

5 2 2.1510 .s j π�
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Fig. 21. First moment matched on the expansion 
point 9

6 2 2.4310 .s j π�  
 

 
 
Fig. 22. First moment matched on the expansion 
point 9

7 2 0 .31s j π�  
 

V. CONCLUSION 
In this paper, a parallel adaptive multi-point 

model order algorithm is proposed, based on a full 
exploration of the frequency range of interest, 
trying to avoid heuristic searching methods for the 
expansion points, matching the most important 
moments of the original model transfer function in 
order to accurately reproduce its dynamics, without 
explicitly computing its dominant poles, and 
reducing the generation time of the ROM by 
exploiting the architectures of modern multi-core 
processors. The proposed method is able to achieve 
a very good approximation of the original transfer 
function, selecting as expansion points the 
frequencies in correspondence to which the error, 

between the response of the original model and that 
of the ROM, is larger than the desired tolerance, 
and increasing the number of moments to be 
matched for each point when necessary. 

The numerical experiments have demonstrated 
that the speedup can be limited by the bus 
contention in the data transfer between the client 
and each parallel processor, in a shared-memory 
environment, but this issue can be handled by using 
distributed-memory architectures. The unbalanced 
loads, delegated to each processor, also may cause 
the performance degradation, but this can be 
alleviated by increasing the number of processors. 

As shown, this method exhibits a slight 
compromise between the requirements of the 
ROM’s generation time and its order of reduction, 
i.e., ROM evaluation can be obtained very quickly 
by slightly increasing the order of the ROM 
retaining redundant expansion points. However, the 
time performance will increase, mainly for very 
large size models. 

In the next future, the application of the 
algorithm to originally-dense data sets like those 
obtained using integral-equation based methods 
(e.g., Method of Moments (MoM) or Partial 
Element Equivalent Circuit (PEEC) method) will 
be investigated. It will be presented in forthcoming 
reports. 
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