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Abstract ─ An efficient wideband finite-difference 
time-domain (FDTD) method is proposed to analyze 
arbitrarily skewed periodic structures at oblique 
incidence. The method is free of complex step-by-step 
phase processing caused by the oblique incident plane 
wave and the stagger unit cells, and the provided 
periodic boundary condition (PBC) is as simple to 
implement as in the normal incidence case. A numerical 
example is simulated respectively by our method in 
one-time calculation over a wideband and the previous 
dual plane wave method requiring multiple repeated 
runs, which verifies the validity and efficiency of the 
proposed method. 

Index Terms ─ Finite difference time domain (FDTD), 
oblique incidence, periodic structures, skewed grids, 
wideband. 

I. INTRODUCTION 
In the field of electromagnetism, periodic 

structures have been drawing great attentions for tens of 
years, in a wide range of applications in frequency 
selective surfaces (FSS) [1-3], electromagnetic band 
gap (EBG) devices [4] and phased antenna arrays [5], 
etc. To analyze periodic structures, finite-difference 
time-domain (FDTD) algorithm [6] has been extensively 
utilized, and in general only one unit cell needs to be 
modeled and simulated according to the Floquet theory 
[5]. A lot of work has been done on FDTD algorithm by 
incorporating periodic boundary conditions (PBC) to 
deal with periodic structures, at both normal and 
oblique incidence [7-11]. When the object is illuminated 
by a normally incident plane wave, the electromagnetic 
fields on the boundary of one side of the rectangular 
unit cell are identical to those on the other side, so that 
a wideband response can be conveniently obtained by 
stimulating a transient pulse [8]. However, for the 
oblique incidence case, the time delay in the time 
domain caused by the phase shift between corresponding 
boundaries in the frequency domain leads to difficulties 
in using the PBCs. By proposing the dual plane wave 
method, [7] tackled the obstacle at oblique incidence, 

but only a single frequency is fixed in each calculation. 
Afterwards, the split-FDTD method [6,8], some implicit-
FDTD methods [9-11] and the material independent 
FDTD method [12] were proposed respectively, 
successfully realizing the ability of wideband calculation 
at oblique incidence. 

It is worthwhile pointing out that the aforementioned 
implementations of the PBCs are developed to deal 
with regular rectangular periodic structures, as shown in 
Fig. 1 (a). Nonetheless, a number of applications with 
arbitrarily skewed adjacent rows in periodic structures 
as shown in Fig. 1 (b) are frequently encountered. For 
example, in order to obtain superior bandwidth and 
stability to different incident angles and polarizations, 
the FSS needs to be designed with a specific skewed 
angle [1]. Therefore, the analysis of skewed periodic 
structures is necessary and important. In terms of the 
FDTD method treating skewed periodic structures, the 
dual plane wave method to analyze the periodic phased 
array with skewed grids was adopted in [13], but each 
calculation is only fixed on one single frequency at the 
specific incident angle. Reference [14] presented 
another method to deal with the issue, employing the 
constant horizontal wavenumber approach. Although in 
each calculation the frequencies in a wideband are 
involved, the corresponding incident angle of each 
frequency is different from each other, because of the 
horizontal wavenumber being fixed. Therefore, it can 
be seen that for a specific incident angle, this method 
still fails to retain the wideband capacity of the FDTD. 

In this paper, the field transformation [15] is 
employed in the FDTD algorithm, to analyze periodic 
structures with arbitrary skewed grids impinged by the 
obliquely incident plane wave at specific angles. We 
prove that the field transformation, which is the basic
treatment to realize wideband FDTD analysis at oblique 
incidence in [8-12], is capable of dealing with the 
skewed periodic structures as well. The split-FDTD 
method is extended into the PBCs for skewed grids, and 
the updating equations are presented. The validity of 
the method is verified by a numerical example, which 
provides the results calculated by the dual plane wave  

1054-4887 © 2015 ACES

Submitted On: February 2, 2015
Accepted On: August 14, 2015

1068 ACES JOURNAL, Vol. 30, No. 10, October 2015



FDTD method as a comparison. 
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Fig. 1. Periodic structures with: (a) regular rectangular 
grids, and (b) arbitrarily skewed grids. 

II. IMPLEMENTATION OF THE 
PROPOSED METHOD 

Here, three dimensional structures which are 
periodic in the x- and y-directions with skewed grids in 
the x-direction are considered. The oblique incident 
plane wave is launched along the angles θ and φ.
Hence, the PBC of any electromagnetic field component 
Φ is expressed as: 

[ ( ) ]( , ) ( , ) ,x x y yj k rT s x k sT
x yx rT s x y sT x y e� 	 8 	9 	 	 8 	 � 9 � (1)

where r and s are any integers, kx and ky are the 
components of wavenumber in the x- and y- directions 
respectively, which are calculated as: 
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where k is the wavenumber of the excited plane wave in 
free space. It can be seen that the PBC along the y-
direction is the same as that of the regular rectangular 
periodic structures, but it is more complex along the x-
direction. In order to use the field transformation to 
remove the phase shift in the Maxwell’s equations, a set 
of auxiliary variables is introduced as: 
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where η0 is the impedance of free space. By replacing Φ
in (1) with E and H respectively and substituting (3) 
into (1), we obtain: 
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Obviously, it has been proved that the PBCs of the 
transformed fields P and Q possess the same forms as 
the case of normal incidence, without the phase shift. 
Therefore, it is confirmed that the previous work on 
wideband FDTD analysis to analyze regular rectangular 
periodic structures at oblique incidence can be extended 
to deal with skewed ones. In this paper, we choose to 
employ the split-FDTD method to develop the  

implementation. 
Considering a lossless anisotropic medium, by

substituting (3) into Maxwell’s equations, a set of 

transformed equations is obtained as: 
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where 
sin cos / , sin sin / , 0,x y zk c k c k: � : �� � � � � (6)

and c is the speed of light. Although zk  is zero, it is 
kept in (5) in order to maintain the symmetry and the 
cyclic feature of the equations. To conserve space, only 
(5c) is processed in detail to present the split method in 
the following. By defining a new variable Pza, Pz is split 
into two parts as: 
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Similarly, the split form of the other five components 
can be written conveniently. It can be seen that (7b) is 
exactly the ordinary formed FDTD formula, so that Pza
can be obtained in the conventional iteration manner. 
With regard to the absorbing layers, the auxiliary 
differential equation (ADE) treatment [16] is utilized to 
implement the perfect matched layers (PML). By 
substituting Qy and Qx into (7a), and noting that 0zk � ,
Pz can be obtained as: 

2 22 2
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It should be noted that since the time step of Pz and Pza
is n, that of Qya and Qxa should be n as well, rather than 
n-1/2. Therefore, other than the leapfrog updates of the 
conventional FDTD, in each half-time-step, all the 
components need to be updated. Moreover, in order to 
retain the centered nature of the method, spatial 
averaging of Qya and Qxa is also needed. Therefore, the 
discretization of (8) is written as: 
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Similarly, Qz is updated by: 
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By substituting (9) and (10) into the counterpart formulas 
of (7a) respectively, the other four components can be 
updated as: 
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Hence, the updating equations have been fully presented. 
The stability condition of the split method for a square 
cell and x yk k� is [6]: 

2 2/ cos / 2 cos .c t s : :8 8 � 	 (12)
In terms of other cases, the rigorous stability condition 
is quite complicated [6], but the maximum allowed 
values along with θ are not significantly discrepant 
from (12). Therefore, it can be seen that when the 
incident angle is close to grazing (θ=90°), implicit 
methods such as those of [10] and [11] are more 
practical to be extended to the case of skewed grids. 

When updating the aforementioned FDTD formulas, 
extra care of y-direction boundaries needs to be taken, 
compared with regular rectangular periodic structures. 
The schematic diagram of the FDTD grid arrangement 
for arbitrarily skewed periodic structures is shown in 
Fig. 2. Each unit cell (Tx×Ty) is meshed using Nx×Ny
grid cells (dx×dy), and Nx=5, Ny=4 are set here as an 
example. lx and α are the skewed shift and angle 
respectively, of which the calculation relationship is: 

/ tan .lx Ty �� (13)
The unit cell A in the center is the simulating object, 
while others surrounded by red lines are its neighboring 
unit cells. For any field Ψ on the boundaries in the x-
direction, the PBC is the same as the conventional one 
which can be written as: 

( 1, ) ( , ) 1,
( 1, ) (1, ) .
i j Nx j while i
i j j while i Nx

= � � = �
= 	 � = � (14)

For Ψ on the y-directional boundaries, two cases need
to be discussed respectively: 
1) On the top boundary when Ψ(i, j+1) are needed:
From (4) we can obtain: 

( , ) ( , ),yx y x Tx lx y T= � = 	 � � (15)
and its discretized form when j=Ny can be written as: 

( , 1) ( ,1).i j i Tx lx= 	 �= 	 � (16)
In Fig. 2, the fields Ψ(i, Ny+1) of the unit cell A are 
denoted by solid green triangles on the top boundary, 
while the fields Ψ(i+Tx-lx,1) lying on the corresponding 
positions on the bottom boundary of A are indicated by 
the same marks. Since generally the skewed shift is not 
multiple integer of dx, the hollow green triangles are 
needed for interpolations. It should be noted that once 
the index of the hollow mark is larger than Nx, the 
cyclic shift is necessary to be utilized. Therefore, (16) 
can be rewritten as: 
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where ' (- .  is the truncating function, ω1 and ω2 are the 
normalized distance between the solid mark and the 
hollow marks on its left and right hands respectively. 
2) On the bottom boundary when Ψ(i, j-1) are needed: 
Similar to (16), the boundary condition for Ψ(i, j-1) when 
j=1 is: 

( , 1) ( , ).i j i lx Ny= � � = 	 (18)
Thus the fields Ψ(i, 0) of the unit cell A are denoted by 
solid blue circles on the bottom boundary in Fig. 2.
Similar to (17), the PBC of Ψ(i, j-1) while j=1 can be 
written as: 
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Therefore, by utilizing (14), (17) and (19), the fields on 
the boundaries for updating the FDTD formulas can be 
resolved. In the particular case when lx and Tx-lx are 
the integer multiples of dx, (17) and (19) are capable as 
well, with ω1=0 and ω2=1 respectively. It is worthwhile 
pointing out that the fields locating on the positions 
(i±1/2, j±1/2) are not necessary to be arranged 
specifically or marked in Fig. 2, since the criterion of 
their positions in the interpolation process is thoroughly 
dependent on the grid cell positions, i.e., (i, j).

It can be seen that the implementation of the 
proposed method to deal with general skewed periodic 
structures at oblique incidence is as simple and 
straightforward as the normal incident case. Owing to 
the confirmation of (4), the method is free of careful 
studies on the phase shift in individual boundary parts, 
which has to be taken in the dual plane wave method 
[13] and constant horizontal wavenumber method [14]. 

i

y

x

j

�

lx

Ty

Txdx
dy

A

Fig. 2. Schematic diagram of the arbitrarily skewed 
FDTD grids. 

III. NUMERICAL RESULTS 
To demonstrate the performance of our method, an 

example of a Jerusalem Cross FSS (JCFSS) between 
two anisotropic lossless media (εrx=2.2, εry=1.1, εrz=1.5) 
is implemented, as shown in Fig. 3. The unit cell period 
is Tx=Ty=6 mm, the thickness of the JCFSS is 0.625 mm,
and the thickness of the substrate is 2 mm. The skewed 
angle is α=60°. The incident plane wave is propagating 
along the direction θ=30° and φ=50°, and both the TM 
and TE cases are investigated. The structure is firstly 
simulated by our wideband method, using a sine 
modulated Gaussian pulse centered at 15 GHz and with 
20 GHz bandwidth as the excitation. The grid cell size
is Δx=Δy=Δz=0.125 mm, and the time step is Δt=Δz/(5·c).
As a comparison, the example is also simulated by the 
dual plane wave method, which is repeated 41 times in 
the frequency range from 5 to 25 GHz by 0.5 GHz 
frequency step. 

(a)

�

x

y

z

:

�

6mm

2mm 0.5mm

2mm 2mm

0.625mm

(b)

(c) (d)
6mm

x
y

Fig. 3. Schematic diagram of the JCFSS: (a) top view of 
the skewed periodic JCFSS, (b) direction of the incident 
plane wave, (c) top view of one unit cell, and (d) side 
view of one unit cell. 

The reflection coefficients of co- and cross-
polarizations for both TM and TE cases are presented in 
Fig. 4. It can be noticed that good agreement between 
the results of dual plane wave method and results of our 
wideband method is obtained. However, it can be 
observed that some sharp peaks of the coefficients 
might be missed when using the method calculating on 
individual frequencies, while the wideband method 
possesses the capacity and advantage to present the 
details of the frequency response. 
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Fig. 4. Reflection coefficient co-polarization and cross 
polarization for JCFSS oblique incident plane wave 
(θ=30°, φ=50°) with skewed angle α=60°: (a) TM case 
and (b) TE case. 

IV. CONCLUSION 
In conclusion, an efficient FDTD approach for the 

wideband analysis of arbitrarily skewed periodic 
structures at oblique incidence is introduced. By 
proving the field transformation technique to be valid in 
the skewed PBCs, the split-FDTD is extended to 
analyze periodic structures with skewed grids. The 
implementation avoids deliberate calculation of the 
phase shifts caused by the oblique incidence and the 
stagger of unit cells. Instead, it presents the PBC as 
simple as that in the normal incidence. And most 
significantly, our method realizes the wideband 
capability to analyze skewed periodic structures at 
oblique incidence, while the previous related FDTD 
work require multiple runs in terms of different 
frequencies. The validity and effectiveness of the 
method is verified by a numerical example, comparing 
with the results calculated by the dual plane wave 
method. 
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