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Abstract ─ The cutoff wavenumbers, cutoff frequencies, 
field distributions and dispersive characteristics of TM 
and TE modes (higher order modes) in eccentric coaxial 
lines are carefully calculated by a new method directly 
based on the finite difference method (FDM) in bipolar 
coordinate system (BCS). Detailed comparisons with the 
previous results in the literature demonstrate the accuracy 
of the proposed method. Several characteristic features 
of the field distributions and the dispersion relations are 
also indicated. This method and its variations are very 
suitable and efficient for the computation of electromagnetic 
field problems in transmission lines with eccentric 
parallel cylinders. 
 
Index Terms ─ Bipolar coordinate system, eccentric 
coaxial line, finite-difference method, transmission line, 
waveguide. 
 

I. INTRODUCTION 
The coaxial transmission lines have been widely 

used in different devices for various applications from 
the early 1900s. As a special case, the coaxial line with 
an eccentric inner conductor is termed as the eccentric 
coaxial line, which has been suggested to be used as an 
adjustable quarter-wave transformer for TEM mode 
propagation [1]. The effect of the displacement of the 
inner conductor on the electromagnetic characteristics of 
this kind of transmission lines was firstly investigated in 
1960s [2]. As the eccentricity between the two conductors 
increases, higher order TM and TE modes may be 
excited at relatively high frequencies. For this problem, 
lots of methods mainly based on the conformal mapping 
and/or the boundary value approach have been reported 
in the literature continuously [2-11]. These methods 
have proven to be powerful for the solution of various 
wave-field problems. However, they are often found to 
be somewhat complex in practical applications. Analysis 
of TM and TE modes (higher order modes) in eccentric 

coaxial lines still remains interesting and challenging in 
the theory of electromagnetism. 

The aim of this paper is to present a relatively simple 
method for the numerical analysis of eccentric coaxial 
lines through a computational approach. A new method 
which is directly based on the finite difference method 
(FDM) [12] in bipolar coordinate system (BCS) [13] is 
selected for much of this modeling effort. The FDM is a 
versatile and powerful technique for the computation of 
electromagnetic field problems, which is sufficient to 
allow us to investigate the higher order TM and TE 
modes in eccentric coaxial lines. The BCS has been 
successfully applied to the calculation of scattering from 
circular cylinders [14,15], which is much more convenient 
than the translational addition theorem of Bessel 
functions for transferring the fields component between 
two cylindrical coordinate systems [16]. 

This paper is organized as follows. We begin by 
discussing the methodology in Section II. The numerical 
results are then explored in detail and their comparisons 
with the previous results discussed in Section III. Finally, 
further discussion and conclusions are drawn in Section 
IV and Section V, respectively. 
 

II. MODELING USING 2-D FDM IN BCS 

A. Modeling in BCS 

In uniform waveguides and transmission lines, the 
waveguiding structures are not changed along the 
propagating direction. The cross section of an eccentric 
coaxial line is shown in Fig. 1 (a). It contains a circular 
outer conductor and an eccentric circular inner conductor. 
The radii of the outer and inner circles are r1 and r2 
respectively, and d is the distance between their centers. 

This kind of waveguiding structure can be easily 
defined in the bipolar coordinate system (ξ, η, z) as 
shown in Fig. 1 (b) [13]. Let P1 and P2 be two fixed points 
in any z-plane with the coordinates (a, 0) and (-a, 0)  
respectively. The equations: 
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 2 2 2 2( coth ) cschx a y a    , (1) 
 2 2 2 2( cot ) cscx y a a    , (2) 
describe two families of orthogonal circles. Equation (1) 
describes the circles whose centers lie on the x-axis. The 
point P1 at (a, 0) corresponds to ξ = +∞, whereas its 
image P2 at (-a, 0) corresponds to ξ = -∞, and the y-axis 
is approached when ξ = 0. Equation (2) describes the 
circles whose centers lie on the y-axis and all of which 
pass through the fixed points P1 and P2. The parameter η 

is confined to the range 0 ≤ η ≤ 2π. A value less than π is 
assigned to the arc above the x-axis, while the lower arc 
is denoted by a value of η equal to π plus the value of η 

assigned to the upper segment of the same circle. 
The relation between BCS and Cartesian coordinate 

system can be described as: 
 1 sinhx h  , (3) 
 2 siny h  , (4) 
 3z h z , (5) 
where the metrical coefficients are: 
 

1 2 3,  1
cosh cos

a
h h h h

 
   


. (6) 

Suppose the two circles in Fig. 1 (a) both lie to the 
right of the y-axis in Fig. 1 (b), as shown in Fig. 1 (c), the 
parameters stated above are related by the following 
equations: 
 1 2(coth coth )d a    , (7) 
 1 1cschr a  , (8) 
 2 2cschr a  . (9) 

Then, we can get the transformation relations: 

 
2 2 2 2

1 2 1 2( ) ( )

2

r r d r r d
a

d

         
 , (10) 

 
1

1

arcsinh a

r
  , (11) 

 
2

2

arcsinh a

r
  . (12) 

Here, in order to define the entire region in BCS, the 
parameter ξ is confined to the range ξ1 ≤ ξ ≤ ξ2, in order 
to define the entire region in BCS together with the other 
confinement 0 ≤ η ≤ 2π. 
 

 
 (a) 

 
 (b) 

 
 (c) 
 
Fig. 1. Modeling in bipolar coordinate system: (a) cross 
section of eccentric coaxial line, (b) bipolar coordinate 
system, and (c) relations between the parameters. 
 
B. Helmholtz equation and boundary conditions 

Maxwell equations for the potential φ(ξ, η, z) of an 
eccentric coaxial line lead to the following homogeneous 
Helmholtz equation in BCS: 
 2 2 0ck    , (13) 

where 
2 2

2 2 2 2
2 2 2

1 ( ),  ,  ,c zk k k k
ch



 


 
     

 
 and c 

is the speed of light. 
For TEM mode, k = kz, when chξ - cosη ≠ 0 we can 

get the Laplace equation: 

 
2 2

2 2( ) 0
 

 
 

 
, (14) 

which can be analytically solved by means of the 
variable separation approach. 

For TM and TE modes, the Helmholtz equation is: 

  
2 2 2

2
2 2 2

cosh cos
0ck

a

 
 

 

   
   

  

. (15) 

It has been proven strictly in mathematics that this 
equation can't be solved by means of the variable 
separation approach. Fortunately, this problem can be 
easily solved by means of the numerical methods such as 
the FDM and the finite element method (FEM). 

For TM modes, φ = Ez, the Dirichlet boundary 
condition φ = 0 is employed on the boundaries ξ = ξ1 and 
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ξ = ξ2. While for TE modes, φ = Hz, the Neumann 
boundary condition ∂φ/∂n = 0 is used. In addition, with 
consideration of the rotational symmetry, the periodic 
boundary conditions should be applied on the boundaries 
η = 0 and η = 2π. 
 
C. FDM applied to the Helmholtz equation 

According to Eq. (15), we can easily obtain the 
difference form of the Helmholtz equation in BCS on an 
orthogonal mesh. Based on the equation and the boundary 
conditions, a differentiation matrix A can be obtained for 
solving the eigenvalue problem: 
 2

cA k    , (16) 
where Φ is the eigenvector of φ values and λ = kc

2 is the 
required eigenvalue. 

Finally, the cutoff wavenumbers, the cutoff frequencies, 
the field distributions and the dispersive characteristics 
can all be achieved from the solution of this eigenvalue 
problem. 
 

III. NUMERICAL RESULTS 
Based on the above methodology, a special code has 

been constructed using the Microsoft Visual C++ 
programming language. The aim of this code is to solve 
the eigenvalue problems in BCS, print and save numerical 
results, and plot the field distributions. This code is very 
fast, it takes less than half a minute to calculate the first 
twenty eigenvalues for each case listed in the tables 
below on a single personal computer. 

According to the previous publications, in order to 
be convenient for comparison and conversion, the results 
are always given for an outer circle of unit radius, the 
radius of the inner circle being denoted α = r2 / r1 and the 
distance between the centers of the circles denoted  
β = d / r1. To convert these frequencies to those of a similar 
region with outer circle of radius r1, divide these 
frequencies by r1. When comparing the results of other 
authors, their frequencies were normalized to an outer 
circle of radius 1. In this case, the transformation relations 
demonstrated in Eqs. (10)-(12) can be rewritten as: 

 
2 2 2 2(1 ) (1 )

2
a

   



         
 , (17) 

 1 arcsinh a  , (18) 

 
2 arcsinh a



 . (19) 

In our calculations, the values of α and β for which 
Kuttler [3] presented tables are selected. The main 
parameters used in the present calculations are 
summarized in Table 1. For purposes of direct comparisons, 
the cutoff wavenumbers obtained by the present 
calculations together with those evaluated by Kuttler [3], 
Vishen [4], Zhang [6] and Das [9] for symmetric and 

asymmetric TM as well as TE modes are given in Tables 
2 to 5. 
 
Table 1: Main parameters for the calculations 

Parameters Values 
r1 1 
r2 The value of α 
d The value of β 
Range of ξ Calculated from Eqs. (17)-(19) 
Range of η [0, 2π] 
Δξ 0.01 
Δη 0.01 

 
From the tables we can find that for TM modes, our 

results coincide with those of Vishen [4] and Zhang [6], 
which are all within the bounds reported by Kuttler [3]. 
For TE modes, our results do not agree with those of [4,6] 
very well, but most of them are within the bounds 
reported by Kuttler, and are all very close to the upper 
bounds. Obviously, for both TM and TE modes, our 
results do not agree with those of Das [9], we think the 
main reason is that the small numbers of the grid nodes 
(corresponding to the large spatial steps) used in [9] 
cause rough mesh and low precision in their calculations. 

Then, based on the cutoff wavenumbers listed in the 
tables, the eigenvalues and the corresponding eigenvectors 
in Eq. (16) can be easily achieved from the relation  
λ = kc

2. After that, the field distributions can be directly 
plotted using the φ values in the eigenvectors and the 
mode numbers can be easily determined from the field 
distribution plots. In Fig. 2 and Fig. 3, we detail the field 
distributions of the longitudinal field components for the 
lowest TM and TE modes corresponding to the case of  
α = 0.5 and β = 0.2, respectively. Here, we use the prefix 
“e” for even (symmetric) modes and “o” for odd 
(asymmetric) modes [2,17]. 

Finally, the cutoff angular frequencies ωc, the cutoff 
frequencies fc and the dispersive characteristics can be 
easily achieved from the relations ωc = 2πfc = fcc, ω2 = 

ωc
2 + kz

2c2. The cutoff frequencies for the lowest TM and 
TE modes corresponding to the case of α = 0.5 and β = 0.2 
are given in Table 6, and the dispersion curves for these 
modes are shown in Fig. 4. 

From the field distributions and the dispersion curves 
we can find several characteristic features: (1) each of 
the TEmn and TMmn modes splits up into one even mode 
and one odd mode when m ≠ 0; (2) the TM0n modes are 
all even modes, and the TE0n modes do not exist; (3) the 
cutoff frequencies of the TEmn modes are much lower 
than those of the TMmn modes with the same mode 
numbers m and n; (4) the cutoff frequencies of the eTEmn 
modes and the oTEmn modes with the same mode 
numbers are very close to each other, so their dispersion 
curves nearly overlap. 
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Table 2: Cutoff wavenumbers for symmetric TM modes 

Case Our Results Das [9] Zhang [6] Vishen [4] Kuttler Bounds [3] 
Lower Upper 

α=0.5 
β=0.1 

5.4695 
6.4747 
7.3062 
7.8692 
8.4965 

5.432 
6.431 
7.257 
7.815 
8.433 

5.46953 
6.47472 
7.30617 
7.86924 
8.49647 

5.4695 
6.4747 
7.3062 
7.8692 
8.4965 

5.46911 
6.47403 
7.30527 
7.86823 
8.495 

5.47043 
6.47547 
7.30683 
7.86982 
8.4972 

α=0.5 
β=0.2 

4.8106 
6.1724 
7.3945 
8.4974 
9.3409 

4.792 
6.127 
7.386 
8.445 
9.158 

4.8106 
6.1724 
7.3945 
8.4974 
9.3409 

4.8106 
6.1724 
7.3945 
8.4974 
9.3409 

4.80935 
6.1703 
7.3907 
8.4894 
9.2694 

4.81191 
6.1735 
7.3957 
8.4991 
9.3488 

α=0.5 

β=0.3 

4.3071 
5.8903 
7.3197 
8.2909 
8.6388 

4.293 
5.828 
7.198 
7.953 
8.365 

4.3071 
5.8903 
7.3197 
8.2909 
8.6388 

4.3071 
5.8903 
7.3197 
8.2909 
8.6388 

4.3042 
5.8736 
7.24 

8.081 
8.382 

4.3118 
5.8944 
7.325 
8.316 
8.646 

α=2/3 
β=0.2 

6.2399 
7.6769 
9.0439 

10.3535 
11.6134 

6.217 
7.65 
8.99 

10.309 
11.523 

6.2399 
7.6769 
9.0439 

10.3534 
11.6134 

6.2399 
7.6769 
9.0439 

10.3536 
11.6184 

6.2379 
7.6728 
9.0323 
10.318 
11.539 

6.242 
7.6787 
9.0456 
10.356 
11.616 

α=0.25 

β=0.25 

3.4723 
4.9221 
5.9268 
6.7154 
6.7527 

3.446 
4.897 
5.862 
6.58 

6.626 

3.4723 
4.9221 
5.9268 
6.7154 
6.7527 

3.4723 
4.9221 
5.9268 
6.7154 
6.7527 

3.4687 
4.911 
5.893 
6.591 
6.622 

3.4752 
4.9249 
5.93 
6.723 
6.767 

α=0.25 
β=0.5 

2.9824 
4.7868 
5.8084 
6.2439 
7.5586 

2.981 
4.781 
5.777 
6.234 
7.356 

2.9824 
4.7868 
5.8084 
6.2439 
7.5586 

2.9824 
4.7868 
5.8084 
6.2439 
7.5592 

2.887 
4.088 

- 
- 
- 

2.996 
4.827 
5.877 
6.323 
7.735 

 
Table 3: Cutoff wavenumbers for asymmetric TM modes 

Case Our Results Das [9] Zhang [6] Vishen [4] Kuttler Bounds [3] 
Lower Upper 

α=0.5 

β=0.1 

5.9918 
6.9203 
7.7123 
8.4845 
9.3564 

5.953 
6.878 
7.619 
8.371 
9.204 

5.99176 
6.92031 
7.71232 
8.4845 
9.3564 

5.9918 
6.9203 
7.7123 
8.4845 
9.3564 

5.99121 
6.91953 
7.7113 
8.483 

9.3542 

5.99257 
6.92102 
7.71299 
8.4852 
9.3572 

α=0.5 

β=0.2 

5.5114 
6.7991 
7.9607 
9.0091 
9.9556 

5.485 
6.729 
7.931 
8.897 

- 

5.5114 
6.7991 
7.9607 
9.0091 
9.9556 

5.5114 
6.7991 
7.9607 
9.0091 
9.9556 

5.5098 
6.7964 
7.9559 
8.9996 
9.9316 

5.5125 
6.8002 
7.9619 
9.0106 
9.9577 

α=0.5 

β=0.3 

5.1224 
6.621 
7.991 

9.1877 
9.2676 

5.088 
6.563 
7.839 
8.814 
8.975 

5.1224 
6.621 
7.991 
9.1877 
9.2676 

5.1222 
6.621 
7.991 

9.1877 
9.2676 

5.1179 
6.5994 
7.876 
8.829 
8.9 

5.1257 
6.6251 
7.997 
9.21 

9.276 

α=2/3 

β=0.2 

6.9683 
8.3682 
9.7053 

10.9892 
12.2266 

6.887 
8.347 
9.61 

10.932 
- 

6.9683 
8.3682 
9.7053 

10.9892 
12.2266 

6.9683 
8.3682 
9.7053 

10.9892 
12.2266 

6.9654 
8.3631 
9.6922 
10.947 
12.128 

6.9702 
8.37 

9.7071 
10.992 
12.229 

α=0.25 

β=0.25 

4.264 
5.5393 
6.6357 
7.7135 
7.7243 

4.248 
5.488 
6.552 
7.46 

- 

4.264 
5.5393 
6.6357 
7.7135 
7.7243 

4.264 
5.5393 
6.6357 
7.7135 
7.7243 

4.2583 
5.5239 
6.582 
7.443 
7.488 

4.268 
5.5425 
6.641 
7.723 
7.735 

α=0.25 

β=0.5 

4.0338 
5.5432 
6.9144 
7.156 

8.1858 

3.973 
5.494 
6.914 
7.144 

- 

4.0338 
5.5432 
6.9144 
7.156 
8.1858 

4.0338 
5.5432 
6.9144 
7.156 

8.1858 

3.858 
4.58 

- 
- 
- 

4.043 
5.575 
6.992 
7.208 
8.355 
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Table 4: Cutoff wavenumbers for symmetric TE modes 

Case Our Results Das [9] Zhang [6] Vishen [4] Kuttler Bounds [3] 
Lower Upper 

α=2/3 

β=0.2 

1.322 
2.4458 
3.6216 
4.7881 
5.9378 

1.318 
2.422 
3.565 
4.672 
5.717 

1.3222 
2.4445 
3.6217 
4.7897 
5.9378 

1.2522 
2.4365 
3.6209 
4.7897 
5.9379 

1.32027 
2.4408 
3.6157 
4.7804 
5.9218 

1.32221 
2.4446 
3.6218 
4.7901 
5.9385 

α=0.475 

β=0.315 

1.5195 
2.7341 
3.9275 
4.3704 
5.0806 

- 
- 
- 
- 
- 

1.5158 
2.7343 
3.9237 
4.4035 
5.0801 

1.4407 
2.7256 
3.924 

- 
5.0799 

1.5132 
2.727 

3.8978 
4.342 
4.977 

1.5159 
2.7345 
3.9248 
4.407 
5.084 

α=1/3 

β=2/9 

1.5808 
2.9063 
4.1164 
4.2334 
5.2649 

1.569 
2.863 
4.016 
4.56 
5.083 

1.5806 
2.9065 
4.1152 
4.2342 
5.2673 

1.5619 
2.9064 
4.1152 
4.422 
5.2669 

1.5766 
2.8968 
4.0944 
4.2146 
5.219 

1.5807 
2.9067 
4.1161 
4.2356 
5.27 

α=0.5 
β=0.2 

1.4076 
2.6863 
3.9296 
5.0178 
5.1135 

1.401 
2.659 
3.918 
4.872 
5.512 

1.40792 
2.6861 
3.9295 
5.0175 
5.1133 

1.3793 
2.6849 
3.9295 

- 
5.1131 

1.40694 
2.6837 
3.9247 
4.9937 
5.1031 

1.40793 
2.6862 
3.9298 
5.0192 
5.1139 

α=0.25 

β=0.25 

1.6848 
2.9616 
3.9744 
4.145 

5.2913 

1.633 
2.908 
3.899 
4.352 
5.055 

1.681 
2.9679 
3.9861 
4.165 

5.2946 

1.665 
2.9678 

- 
4.1191 
5.2942 

1.6768 
2.9445 
3.939 
4.105 
5.111 

1.6811 
2.9684 
3.988 
4.168 
5.303 

α= 

0.15875 
β=0.379 

1.8089 
3.0013 
3.7523 
4.1806 

- 
- 
- 
- 

1.7944 
2.9992 
3.7703 
4.1824 

1.7769 
2.9932 
3.8632 
4.1808 

1.7603 
2.871 
3.432 
3.76 

1.7948 
3.004 
3.775 
4.21 

 
Table 5: Cutoff wavenumbers for asymmetric TE modes 

Case Our Results Das [9] Zhang [6] Vishen [4] Kuttler Bounds [3] 
Lower Upper 

α=2/3 
β=0.2 

1.1928 
2.4297 
3.6196 
4.7879 
5.9324 

1.189 
2.418 
3.415 
4.669 

- 

1.19175 
2.4304 
3.6202 
4.7896 
5.9379 

1.1917 
2.4307 
3.6203 
4.7896 
5.9379 

1.19001 
2.4267 
3.6142 
4.7804 
5.9231 

1.19176 
2.4305 
3.6203 
4.7899 
5.9385 

α=0.475 

β=0.315 

1.3783 
2.7257 
3.9152 
5.0657 
5.4061 

- 
- 
- 
- 
- 

1.3741 
2.7196 
3.9237 
5.0793 
5.4232 

1.374 
2.7187 
3.9244 
5.0796 
5.3686 

1.3715 
2.7125 
3.9069 
5.041 
5.325 

1.3741 
2.7198 
3.9247 
5.083 
5.427 

α=1/3 
β=2/9 

1.5461 
2.9063 
4.1164 
5.1588 
5.2705 

1.532 
2.863 
4.016 
5.053 

- 

1.5435 
2.9064 
4.1152 
5.1651 
5.2758 

1.5435 
2.9058 
4.1152 
5.1606 
5.2758 

1.5393 
2.8966 
4.0955 
5.131 
5.237 

1.5436 
2.9067 
4.1161 
5.167 
5.279 

α=0.5 

β=0.2 

1.3522 
2.6843 
3.9268 
5.1128 
5.8274 

1.344 
2.657 
3.892 
4.982 

- 

1.35218 
2.6834 
3.9295 
5.1131 
5.8315 

1.3522 
2.6838 
3.9296 
5.1131 
5.8106 

1.35114 
2.6815 
3.9247 
5.1036 
5.793 

1.35219 
2.684 
3.9298 
5.1138 
5.834 

α=0.25 
β=0.25 

1.6458 
2.9671 
4.145 

5.0636 
5.3089 

1.633 
2.915 
3.972 
4.654 

- 

1.6489 
2.9678 
4.1581 
5.0581 
5.2964 

1.649 
2.9667 
4.1579 
5.0616 
5.2965 

1.6446 
2.9547 
4.12 
4.978 
5.175 

1.649 
2.9682 
4.16 
5.06 

5.302 
α= 

0.15875 
β=0.379 

1.7544 
2.9884 
4.164 

- 
- 
- 

1.7583 
2.9879 
4.1614 

1.7584 
2.9848 
4.159 

1.733 
2.873 
3.78 

1.7584 
2.989 
4.17 
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Table 6: Cutoff frequencies for the lowest TM and TE 
modes with α = 0.5 and β = 0.2 

Modes kc ωc (×109) fc (GHz) 

TM 
modes 

eTM01 4.8106 1.4432 0.2297 
oTM11 5.5114 1.6534 0.2631 
eTM11 6.1724 1.8517 0.2947 
oTM21 6.7991 2.0397 0.3246 
eTM21 7.3945 2.2184 0.3531 
oTM31 7.9607 2.3882 0.3801 

TE 
modes 

oTE11 1.3522 0.4057 0.06457 
eTE11 1.4076 0.4223 0.06721 
oTE21 2.6843 0.8053 0.1282 
eTE21 2.6863 0.8059 0.1283 
oTE31 3.9268 1.178 0.1875 
eTE31 3.9296 1.1789 0.1876 

 

  
 (a) (b) 

  
 (c) (d) 

  
 (e) (f) 
 
Fig. 2. Field distributions of Ez for the lowest TM modes 
with α = 0.5 and β = 0.2: (a) eTM01 mode, (b) oTM11 
mode, (c) eTM11 mode, (d) oTM21 mode, (e) eTM21 mode, 
and (f) oTM31 mode. 
 

  
 (a) (b) 

  
 (c) (d) 

  
 (e) (f) 
 
Fig. 3. Field distributions of Hz for the lowest TE modes 
with α = 0.5 and β = 0.2: (a) oTE11 mode, (b) eTE11 mode, 
(c) oTE21 mode, (d) eTE21 mode, (e) oTE31 mode, and (f) 
eTE31 mode. 
 

 
 (a) 
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 (b) 
 
Fig. 4. Dispersion curves for the lowest TM and TE 
modes with α = 0.5 and β = 0.2: (a) TM modes, and (b) 
TE modes. 
 

The dependence of the cutoff frequency on the 
eccentricity of the coaxial line has been intensively 
analyzed in the literature, so we will not discuss here. 
The deviation between the numerical results calculated 
by the present method and those presented in the 
literature is very small. This agreement justifies the 
validity of the present analysis. Because BCS is very 
suitable for transmission lines with eccentric parallel 
cylinders, the success of the present method encourages 
its use for other problems, such as the analysis of lunar 
waveguides mentioned in [3] and two-wire waveguides 
[18,19]. For these problems, only some variations of the 
boundary conditions in the present method are required. 
 

IV. DISCUSSION 

A. Accuracy and convergence rate 

It is necessary to discuss the characteristics of the 
proposed method. Here, we will discuss the accuracy and 
convergence rate, which are two of the most essential 
characteristics of a numerical method. 

The accuracy obtained by the proposed method is 
mainly due to the easy definition of eccentric coaxial 
waveguiding structure in BCS. Given an arbitrary cross 
section of an eccentric coaxial line, we can easily get the 
required parameters in BCS through the transformation 
relations demonstrated in Eqs. (10)-(12). Since the inner 
and outer boundaries are all parallel to the ξ-axis in BCS, 
there is no need to worry about the errors from the saw-
tooth shaped boundaries, which has long been suffered 
by the FDM in other coordinate systems, as shown in  
Fig. 5. 

From the Taylor series of φi,j in BCS, we obtain: 

 
 

 
2

2, 1, , 1,
22

2i j i j i j i j
O

   


 

   
   
  

, (20) 

 
 

 
2

2, , 1 , , 1
22

2i j i j i j i j
O

   


 

   
   
  

, (21) 

which indicate that the second derivative of φi,j is second-
order accurate. So, in the case of Δξ = Δη = 0.01 we used 
for the calculations, an accuracy of 0.0001 can be 
achieved. Even higher accuracy can also be easily 
achieved by reducing the spatial step size. 

In order to solve the eigenvalue problem demonstrated 
in Eq. (16) with high efficiency, the Arnoldi method has 
been adopted for the fast computations. The Arnoldi 
method is well known for solving large matrix 
eigenvalue problems. For this classical method, the 
convergence rate has been intensively analyzed in the 
publications in mathematics [20,21], so we will not 
analyze it any more. 
 

   
 (a) (b) 
 
Fig. 5. Comparison of meshes in different coordinate 
systems: (a) mesh with smooth boundaries in BCS, (b) 
and mesh with saw-tooth shaped boundaries in Cartesian 
coordinate system. 
 
B. Comparisons with other methods 

Among all the numerical methods, the FDM is the 
oldest and also the simplest. Its simplicity, however, 
makes it very robust and efficient [12]. It is essential to 
compare the proposed method with other commonly 
used numerical methods. Here, we will give the 
comparisons among the FDM, the finite difference time-
domain (FDTD) method, the FEM method and the 
method of moments (MoM). 

The FDM used in this paper is a numerical 
procedure for converting partial differential equations 
(PDEs) of a boundary-value problem into a set of 
algebraic equations to obtain approximate solutions, it is 
very suitable and efficient for the problem analyzed here. 
The method has been widely used in a variety of 
engineering fields. For a practical problem, if the 
coordinate system is properly chosen, the saw-tooth 
shaped boundaries can be well avoided and the degree of 
accuracy can reach a very high level, which has just been 
discussed. 

The applications of FDM to the analysis of 
electromagnetic problems was empowered by the 
development of a unique scheme for the discretization of 
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the time-domain Maxwell’s equations, which is known 
today as the FDTD method. With the further development, 
the FDTD became probably the most popular numerical 
technique for solving complex electromagnetic problems 
[12]. But, the FDTD is well suited to time-domain full-
wave analysis. There is no need to solve the eigenvalue 
problems using the FDTD method. 

Like the FDM, the FEM is a numerical procedure to 
convert partial differential equations into a set of linear 
algebraic equations to obtain approximate solutions. 
Instead of approximating the differential operators, the 
FEM approximates the solution of a partial differential 
equation. Today, the FEM is recognized as a general 
preeminent method applicable to a wide variety of 
engineering and mathematical problems [12]. Generally, 
when compared with the FDM, the FEM has better 
accuracy and stability, but its realization is too complicated. 
Furthermore, it requires larger computer memory and 
longer computation time. 

The MoM, also known as the moment method, is 
another powerful numerical technique in electromagnetics. 
Like the FEM, the MoM transforms the governing 
equation of a boundary-value problem into a matrix 
equation to enable its solution on digital computers. 
Today, it has become one of the most predominant 
methods in computational electromagnetics [12]. But  
the MoM is particularly well suited to open-region 
electromagnetic problems such as wave scattering and 
antenna radiation, and its realization is also too 
complicated when compared with the FDM. 

To conclude, according to the above comparisons, it 
is easy to see that the FDM in BCS used in this paper is 
the most convenient, efficient and straightforward 
numerical method with high simplicity and practicality 
for the analysis of TM and TE modes in eccentric coaxial 
lines and other transmission lines with eccentric parallel 
cylinders. 
 

V. CONCLUSION 
A new method directly based on the FDM in BCS is 

developed, which is very suitable and efficient for 
calculating TM and TE modes in eccentric coaxial lines. 
Making use of this method, the cutoff wavenumbers, 
cutoff frequencies, field distributions and dispersive 
characteristics of higher order TM and TE modes in 
eccentric coaxial lines are given. Our results agree well 
with the previous results in the literature. In addition, 
several characteristic features of the field distributions 
and the dispersion relations are also indicated. 

The accuracy of this method is mainly due to the 
easy definition of eccentric coaxial waveguiding 
structure in BCS. Furthermore, some variations of this 
method can be applied to the computation of 
electromagnetic field problems in other transmission 
lines with eccentric parallel cylinders (connected or not), 
such as lunar waveguides, two-wire waveguides, and so  

on. 
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