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Abstract — This paper proposes improved
analytical expressions of the torque on cuboidal
permanent magnets. Expressions are valid for any
relative magnet position and for any polarization
direction. The analytical calculation is made by
replacing polarizations by distributions of magnetic
charges on the magnet poles (coulombian
approach). The torque exerted on the second
magnet is calculated by Lorentz force formulas for
any arbitrary position. The three components of the
torque are written with functions based on
logarithm and arc-tangent. Results have been
verified and validated by comparison with finite-
element calculation. Further, the torque can be
obtained with respect to any reference point.
Although these equations seem rather complicated,
they enable an extremely fast and accurate
calculation of the torque exerted between two
permanent magnets.

Index Terms — Analytical calculation, coulombian
approach, force, permanent magnet, torque.

I. INTRODUCTION
Analytical expressions are very powerful,
giving a very fast method to calculate magnetic
interactions. It is why the analytical expressions of
all the interactions, energy, forces, and torques
between two cuboidal magnets are very important
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results. Many problems can be solved by the
addition of element interactions.

Up to now, for the torque components, the
calculations were first realized for a system of two
magnets with parallel polarization direction by
Allag [1] and Janssen [2]. For the perpendicular
case the results have been recently published [3].

In this paper, we develop the calculation for
systems with two magnets with inclined
polarization direction. The torque expressions are
valid for any given point in the space, not only
around the center of the moving magnet. The
expressions of the torque components are obtained
using the Lorentz force method [4]. A comparison
with numerical results using the commercial
software  Flux3D validates our analytical
calculation of the torque exerted between two
permanent magnets.

II. MATHEMATICAL MODEL

We study the interaction between two
parallelepiped magnets, as presented in Fig. 1. The
polarizations J and J’ are supposed to be rigid and
uniform in each magnet. The difference is that J’
are arbitrary oriented in the YZ plane. The model
can be replaced by distributions of magnetic
charges on the poles, generally called coulombian
approach. For simplifying calculation, the
polarization J* will be decomposed into parallel
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component J’, and perpendicular one J’1 (Fig. 2).
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Fig. 1. System with two magnets
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Fig. 2. Polarization decomposition.

A. Parallel polarizations

The first 3-D fully analytical expressions of the
energy and force were presented at the 1984
INTERMAG Conference, Hamburg, Germany [5].
The forces were analytically calculated for two

cuboidal magnets with parallel polarization
directions (Fig. 3).
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Fig. 3. Parallel polarizations.

The energy expressions are:
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The obtained expressions of the interaction
energy are:
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The secondary variables are:
U,=a+(-1) A-(-l)a,

Vi=pB+ED'B=(=1)"b, (5)
where:
W,=r+E)'C=(-D’c,
and
=,/U§ +V + W
From the interaction energy, the force

components can be obtained by F=-grad E.
Consequently, the force components are:
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For the torque calculation, the first magnet is
supposed to be fixed and the second magnet is free
to move in any direction. The torque is calculated
for a movement around the point Or. The Or
position is defined by its coordinates (Dx, Dy, D,) in
the reference axes of the second magnet OXYZ.
View from O, the centre of the fixed permanent
magnet, the Or position is defined by (Dx+a, Dy, +f3,
D +y).

The torque exerted in the second magnet at Ot
is calculated by Lorentz formulas [2, 3, 4]:
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The torque can be also written as:
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The distance r is always the same (see equation
(2)), and Dx, Dy and Dy are the projections of the
distance between the centre of the moving magnet
and the point of torque calculation Or.

After the analytical integrations, the torque is
given by'
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It is easy to identify the link between the
expressions of the torque (12) and the force
components @x, @y, ¢z from (7). Therefore we can

write:
Tyx = ¢//Y '(C(fl)q 7%j7¢~2 '(B(fl)/ 7%]’
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B. Perpendicular polarizations

For the perpendicular polarizations case, the
chosen system is presented in Fig. 4, in which the
polarization of a second magnet is collinear with the
Y axis.

The analytical expressions of the interaction
energy and the forces components for this system
were previously developed [6, 7]. The difference is
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in the Z integration'

- iiiidzjdxjdyj dx (14)

The dlstance r is given by:
r=y@+ X —x) +(B+(1 B-y) +(y+Z-(-1)c)*. (15)
After analytical integration, the energy is given
by:
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Fig. 4. System with perpendicular polarizations.

The wo function depends on the geometrical
parameters (U, V, W, 1):
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The variables U, V, W are given by (5).
The force components can be calculated from
the gradient of energy‘
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For F, the function ¢, is given by:
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Similarly to the parallel polarization case, the
torque exerted on the second magnet at Ot (Fig. 4)
is expressed by:
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The torque can be also written as:
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The final result is given by:
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For the torque component I'L,, parallely
oriented to the Ox axis, the tL, function is given by:
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The torque components in perpendicular case
are also function of the force ones (¢Lx, ¢pLy and

+

$12).
II1. TORQUE CALCULATION FOR
INCLINED POLARIZATION
DIRECTION

For an inclined polarization J’ as presented on
Fig. 1 and Fig. 2. It can be represented as:
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J'=J', sin(@)+J', cos(6)- (25)
Therefore the total torque will be:
[ =T,sin(@)+T, cos(d)- (26)
Using equations (11) and (23), final
expressions of the torque are:
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J- J COS(0 71 ]710 "’10 ]7? ”’10"’10 kel (27)

The components of 7, and 7,
equations (12), (13) and (24).

Expressions of the torque components:
For I'x:
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IV. APPLICATION AND RESULTS

The following example presents the torque
calculation between two magnets. These magnets
are identical; two cubes of 1 cm edge. The lower
magnet has a vertical polarization (oriented in Z
direction). For the second magnet, its polarization
is inclined in the YZ plane (Fig. 5). The intensity of
polarization is 1 Tesla for the two magnets. The
upper magnet moves in translation along the Ox
axis above the lower fixed one. The vertical
distance between them (air gap when the upper
magnet is above the fixed magnet) is 0.0l m (=0
m and y =0.02 m).

< N
N N
N N
A

E:i%tance D=0,0lm

Fig. 5. Geometrical disposition of the magnets.

For the first application, the second magnet
polarization is inclined (6 = 45°). The torque is
calculated in the centre of the second magnet (Dx,
Dy and Dz are equal to zeros). The results from
analytical and numerical model using Flux3D are
given in Fig. 6, proving a good accuracy of our
approach.

We let the same physical and geometrical
parameters as in previous example, except for the
degree of inclination which is changed to 6 = 30°.
In this case also, the results are compared with
Flux3D finite element software (Fig. 7).

In the second application, the second magnet is
fixed at a = 0.0025 m, B =0 m, y = 0.02 m. We
simulate and calculate the torque for one complete
rotation of polarization (Fig. 8). The torque is
computed at the centre of the magnet and its three
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components are presented in Fig. 9.

We can also calculate the torque components at
any position of Or, the next results concern the
calculation of the torque at the position shown in
Fig. 10, corresponding to Dx = -2 a, Dy =0 and Dz
= 0. The dimensions a,  and y are the same as the
last application (o = 0.0025 m, B =0 m, y = 0.02
m).The result in this case is presented as a function
of a rotation angle 0 on Fig. 11.
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Fig. 6. Torque components for 45° inclined
polarization of PM2.
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Fig. 7. Torque components for 30° inclined
polarization of PM2 (second magnet).
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Fig. 8. Magnet position and polarization directions.
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Fig. 9. Torque components calculation for one
rotation of inclined polarization of PM2 (o= 0.0025
m, =0m,y=0.02 m).
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Fig. 10. Localization of the torque calculation point.
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Fig. 11. Torque calculation at Dx = -0.005 m, Dy =
0 m and Dz = 0 m, as function of rotation angle 0.

V. CONCLUSION
This paper presents a new contribution in
analytical torque calculations for cuboidal
permanent magnets with inclined polarizations
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from any position. These investigations allow the
direct calculation of many systems working by the
forces or the torques between magnetized cuboidal
elements (magnetic bearings, Halbach arrays....).
These results can also be used for many other
calculations, like complex shapes of magnets which
can be replaced by a combination of several
parallelogram ones.
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