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Abstract ─ An exact formulation of a generalized 
orthogonality integral for the spherical boundary 
condition is proposed. This integral usually appears 
in the problems contained in conical and biconical 
antennas. The analytical results are successfully 
validated through a comparison with the numerical 
results. 

Index Terms ─ Orthogonality integral, spherical 
boundary condition. 

I. INTRODUCTION 
In the analysis of electromagnetic boundary-

value problems, any solution for the time-harmonic 
electric and magnetic fields must satisfy 
Maxwell’s/vector wave equations as well as the 
appropriate boundary conditions [1]. The vector 
wave equations usually reduce to a number of scalar 
Helmholtz equations, and the general solutions can 
be founded in three-dimensional orthogonal 
coordinate systems. 

Many researchers are interested in the 
formulation of full-wave spherical boundary value 
problems previously [1-9]. In order to find out 
unknown coefficients and to drive an exact solution 
for these structures, it is usually preferred to use the 
orthogonality properties of spherical functions to 
reduce the integrals to simple exact solutions.
Although most of the orthogonality integrals are 
solved before, which may be found in the reference 
[10], there are some integrals which haven’t been
addressed yet in the mathematical or physical 
literatures. However, it is worth noting that the 
numerical solutions to these integrals are the main 
time consuming part of the electromagnetic 
boundary-value problems. The importance of the 
exact solutions is clearer in the problems contained 

to high degrees of complexity of the boundary 
condition, as well as mode-matching problems. In 
such problems, due to complexity and iterative 
nature of numerical solutions, it is critical to reduce 
all numerical integrals to their simple exact 
solutions. 

In this paper, an exact formulation for the 
generalized spherical orthogonality integral of the 
legend functions of the first and second kind, which 
usually appears in the problems contained in
conical and biconical antennas is proposed. The 
obtained analytical formulas confirm the general 
conclusions recently presented in [3-5]. It is 
demonstrated that the analytical results have been 
successfully validated through a comparison with 
the numerical results. The extracted formula is very 
easy to implement, essentially general and 
applicable to any problem, without the need to 
know where the singularities will take place. 

II. FIELD ANALYSIS 
Figure 1 (a) illustrates a slotted hollow 

conducting sphere of radius a, containing a 
Hertzian dipole � �rJzJ )ˆ� , placed at the center 
( 0)r � 0) ; here � ��� ,,r  are the spherical coordinates 
and )  is a delta function. The time convention is 

tje *�  suppressed throughout. Due to azimuthally 
symmetry, the fields depend on � ��,r , and the fields 
are then TM waves, which can be expressed in 
terms of magnetic vector potentials. The total 
magnetic vector potential for the un-slotted sphere 
(first region, I) is a sum of the primary and 
secondary magnetic vector potentials, [3]:

� � � � � ���� ,ˆ,ˆ, rArrAzrA s
r

p
z

i �� , (1)
while the primary magnetic vector potential is a 
free-space Green’s function as: 
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ẑ  and r̂  are the unit vectors and 
�cos222 rrrrR 3�3�� . And the secondary magnetic 

vector potential is: 

 � � � � � ��
4

�

�
0

cosˆ,
n

nInn
s
r PrkJarA �� , (3) 

where � �.ˆ
nJ  and � �.nP  are the spherical Bessel and 

Legendre functions, respectively, and [3]: 
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Now consider a slotted conducting sphere, as 
shown in Fig. 1 (a). The total magnetic vector 
potential in region (I) consists of the incident iA  

and scattered I
rA  potentials as: 

 � � � � � �
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��  (5) 

Here, nC  is an unknown modal coefficient. 
The r-component of the magnetic vector 

potential in region (II) of the l-th slot is: 
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where � �.nQ  is the Legendre function of the second 
kind and l

vD  and l
vE  are unknown coefficients. 

Here 00 �
l

8  and 
l

v8 satisfies � � � �10cos 1 /� vR ll
v � . 

The r-component of the magnetic vector 
potential in region (III) is: 

 � � � � � � � �2
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ˆ, cos ,III
r n n III n

v
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where nF  is an unknown modal coefficient and 
� � � �.ˆ 2
nH  is the spherical Hankel function of the 

second kind. To determine the modal coefficients, 
we enforced the field continuities, as described in 
details in [4-5]. 

 
 (a) 
 

 
 (b) 
 
Fig. 1. (a) Multiply- and (b) single slotted 
conducting hollow sphere, � � ,I I Ik * � ��  

� � ,II II IIk * � ��  and � � :III III IIIk * � ��  wave 

numbers of region (I) ar � , (II) bra �� , and (III) 
br 9 . 

 
III. FINDING EXACT SOLUTION 

Based on tangential electric field continuity at 
r = a, while we have:  
 1 2.

II I l lE E� � � � �� " "  
Applying Legendre function orthogonality integral,

� � � �� � � �
0

. cos / sin ,ndP d d
�

� � � �3�  to this boundary 

condition, according to [3], -Ivn is defined as below: 
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all required definitions are illustrated in [3-5]. 
The main goal of this paper is to drive an exact 

solution for Ivn integral. To start calculating the 
integral, first we assume that there is only a single 
slot configuration, so the problem is reduced to a 
simple biconical antenna (Fig. 1 (b)).

Integrating by part, and using Legendre 
function properties, some may rewrite (9) as: 
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and 
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Simplification of (12) may result: 
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Substitution (16-20) to (12) yields: 
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Using (11) and (21) one obtains: 
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To verify the extracted formula, a numerical 
evaluation of the Ivn integral, (9), is compared with 
the results of exact equation (22) in Table 1 and 2.
It seems clear that the numerical estimations are in 
good agreement with exact formula. The 
commercial software Mathematica is adopted for 
the numerical integrations. 

Table 1: Calculation comparison, for α1=π/3, α2=2π/3
Number of Modes Eq. 22 Numerical Integration

n=2, l
v8 =1 0.237011470359071 0.237011470359071

n=3, l
v8 =1 0.612011470359070 0.612011470359070

n=4, l
v8 =1 -0.387356331794832 -0.387356331794832

n=1, l
v8 =2 -0.190747132410232 -0.190747132410232

n=1, l
v8 =3 0.167614963435814 0.167614963435814

n=1, l
v8 =4 0.265859967903335 0.265859967903335
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Table 2: Calculation comparison, for n=11, l
v8 =3, α2=π- α1 

Cone Angle Eq. 22 Numerical Integration 

α1=π/3 0.034245642954503 0.034245642954479 

α1=π/6 -0.366169292285009 -0.366169292456850 

α1=π/12 0.013319388336234 0.013319365546954 

α1=π/24 -0.037508615096376 -0.037508811221276 

α1=π/48 -0.005357753392885 -0.005358297043497 
 

IV. CONCLUSION 
An exact formulation of a generalized 

orthogonality integral for the spherical boundary 
condition which is usually calculated numerically 
in the problems contained in conical and biconical 
antennas has been proposed. The analytical results 
have been successfully validated through a 
comparison with the numerical results. 
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