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Abstract ─ We present a fourth order frequency 
domain finite difference approach (FDFD) in 
curvilinear coordinates for the computation of the 
modes of sectorial and ridged elliptic waveguides. 
The use of an elliptic mesh allows to avoid usual 
the staircase approximations of the boundary, 
providing a very effective and accurate procedure. 
 
Index Terms ─ Cutoff frequency, elliptical ridged 
waveguide analysis, finite difference frequency 
domain, microwave components, microwave 
filters, ridged waveguides, waveguide modes. 
 

I. INTRODUCTION 
Application of sectorial and ridged circular and 

elliptic waveguides [1] can be found in many 
components like filters, matching networks, 
orthomode transducers, polarizers and circulators 
that are widely used in satellite and terrestrial 
communication systems [2-6]. Low-cost design, 
small size, and optimal performance of these 
components are essential to satisfy today’s stringent 

payload requirements. Analysis and design of such 
structures requires the solution of waveguide 
problems, which can be faced both with general-
purpose software and with specialized numerical 
techniques, such as methods of moments (MoM) 
[7-9] and mode-matching (MM) [10-11]. However, 
MM requires an accurate knowledge of the 
waveguide modes to be implemented. The same 
type of information is also required in the analysis, 
using MoM, of thick-walled apertures [12] and slots 
[13-14]. Indeed, these apertures can be considered 
as stub waveguides, and the modes of these guides 
are the natural basis functions for the MoM [15]. 

Apart from some simple geometries, where 
analytical evaluation of such modes is possible, the 

mode computation cannot be done in closed form 
(or the closed-form solution is unsuitable for 
effective use). In particular, for a circular 
waveguide, the analytic computation of the modes 
is simple, since the mode distribution can be 
expressed in terms of Bessel functions and the 
eigenvalues are the zeroes of these functions, which 
are well-known [16]. An analytical, closed form 
solution exists also for elliptic waveguides and has 
been found by Chu [17] since the 30’s. 
Unfortunately, the field distribution is described by 
the Mathieu functions [18], whose numerical 
evaluation is very cumbersome. The best approach 
seems the expansion of those functions in a series 
of (more tractable) Bessel functions [19]. These 
series are not quickly converging, so the evaluation 
of these series are computationally heavy, above all 
when a high accuracy is required. In the literature, 
there are many different approximate or numerical 
techniques for the solution the Helmholtz equation. 
In particular, the frequency-domain finite-
difference approach (FDFD) [20], namely the direct 
discretization of the differential eigenvalue 
problem is the simplest strategy however, and can 
be applied to both scalar [21-22] and vector [23] 
problems. Despite of its simplicity, in many cases it 
is accurate and computationally effective, too, since 
at variance of, e.g., [24] it leads to matrices which 
are highly sparse. However, accuracy or 
effectiveness (or both) are lost for guides with 
curved boundary, since the most popular FDFD 
implementation amount to replace the correct 
boundary geometry with a staircase approximation 
a solution which strongly affects the accuracy or the 
computational load (or both). Nevertheless, it is still 
adopted also in sophisticated numerical techniques 
[25]. 
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Aim of this work is to devise a FDFD approach 
for sectorial (SEW) and ridged (REW) 
homogeneous elliptic waveguides, tailored to the 
structure, but as simple as the standard one in the 
formulation. Use of a suitable elliptical grid (which 
perfectly fits the waveguide boundary) allows to 
evaluate the SEW and REW modes with the 
required accuracy using order of magnitude less 
sampling points than the standard approach. For 
each grid point, a fourth-order Taylor 
approximations allow to replace the continuous 
eigenfunction problem with a discrete one. This 
work is therefore an extension of work presented in 
[26], where a second-order approximation has been 
used. 

The proposed approach has been validated by 
comparison with some analytical results found in 
literature [27]. 
 

II. DESCRIPTION OF TECNIQUE 
Let us consider an empty elliptic waveguide. 

Both TE and TM modes can be found from a 
suitable scalar eigenfunction, solution of the 
Helmholtz equation: 
 2 2 0t tk� �� � � , (1) 
with the boundary conditions (BC): 
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at the boundary of the ridged waveguide. Both the 
equation (1) and the BC (2) can be replaced by a 
discretized version, looking for the eigenvalues and 
eigenfunction defined on a suitable set of sampling 
points, and therefore replacing derivatives with 
finite approximations. The standard solution is to 
use a rectangular set of sampling points [22], but 
this forces to replace the curved boundary with a 
staircase approximation. This approximation 
results in a low accuracy (using a course grid), or in 
a heavy computational load (using a very fine grid). 
Since we are interested in elliptic boundaries, our 
propose here is to select a set of sampling points 
located on the elliptic coordinates framework (see 
Fig. 1). 

We choose a regular spacing on the elliptic 
coordinate lines, with step ,u v� � . Letting

� 	,pq p u q v� �� � � , the eigenvalues equation (1) 
should be: 
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For each internal point P (see Fig. 2) is simpler 
to discretize the term in brackets (3) using a fourth-
order Taylor expansion: 
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By combining the four last equations we find: 
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Likely in v  direction: 
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Expression (8,9) are the substituted in the term 
in brackets (3) to get: 
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which easily leads to the FDFD approximation of 
(1). 

Equation (10) cannot be used for the two foci, 
for points between them and for external points. For 
a point P lying on the segment joining the two foci 
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we can integrate (1): 
 2 2

t tdS dSk� � �� �
� � , (11) 
and apply the Gauss theorem to obtain: 

 2 ,
F F
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dl k dS

n
� �

�

�
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�� �  (12) 

wherein FS  is the cell surface, and F�  is the cell 
boundary. 
 

 
 
Fig. 1. Geometry of the elliptic coordinates [28]. 
 

 
 
Fig. 2. Internal point of the elliptic coordinates grid 
TE and TM. 
 

In the elliptic grid used for a SEW or REW, we 
have two types of boundary points: the radial ones 
(P in Fig. 3 (a)) and the angular ones (P in Fig. 3 
(b)). 
 

The TE boundary condition can be enforced in 

the same way for both types of boundary points, so 

we describe it only for an elliptic one (Fig. 3). The 

boundary point X in Fig. 2 (a) is not a discretization 

point. Therefore, use of the Taylor expansion would 

require an extrapolation of � 	u�  outside the 

sampling region, using either X�  to enforce the 

boundary condition 0
n
��
�

�
. 

 

 
 
Fig. 3. (a) Geometry pertinent to the first type of 
boundary point P, and (b) geometry pertinent to the 
second type of boundary point P. 

 
Let us consider an edge point P (Fig. 3 (a)), we 

can write the second derivative in u , as: 
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where: 
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are linear combinations of the unknown coefficient 
iA , and 3np �  is the number of the points used in 

the expression � 	, ,i B N S� . 
Now can be expressed / 0u�� � �  using Taylor 

series: 
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which can be solved for 
Pu

��
�

. Its expression is used 

to and can be used for replace of the terms in the 
bracket on the r.h.s. of equation (13): 
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coefficients iA  are given by the solution of the 
linear system (15) so (8) is replaced by: 
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In the same way, we can replace (9) by: 
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and the equation (10) becomes: 
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A significant advantage of the present approach 
is that TM modes can be computed on the same TE 
grid, at variance of the standard approach [22], 
which calls for two different sets of sampling 
points, to cope with the different BC (2). To get the 
TM modes on the same grid, we express the 
potential in X through a Taylor approximation: 
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and set 0X� � . By adding the last equation with 
(13) and solving the linear system (8) we get: 
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Likely in v  direction: 
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combining the equations (20) and (21) into (10) we 
find the final expression: 
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In the point in Fig. 3 (b), we use the same 
procedure to calculate the approximation of laplace 
operator for TE and TM modes. 
 

III. RESULTS 
The fourth-order FDFD for elliptic ridge 

waveguide described in the previous sections has 
been extensively validated, to evaluate its accuracy 
and effectiveness. In the simulations presented in 
this section, we will consider first a sector of elliptic 
ridged waveguide (see Fig. 4) and then a ridged 
sector. All dimensions have been normalized to the 
minor semi-axis of the ellipse. 

Our FDFD procedure has been assessed against 
the analytical results of [27]. The resulting 
eigenvalue problem has been solved using standard 
MATLAB routines, on a PC with two Intel Xeon 
E5504 CPUs@2.00 GHz, 48 GB RAM, OS: MS 
Windows 7 Professional. 
 

 
 
Fig. 4. Elliptic sectorial guide with 1 0.1u � , 

2 0.5u � , and 1 50v � 
 � , 2 50v � � . 
 

The main results of our validation are collected 
in the next tables � 	1 2,u u u� , � 	1 2,v v v� . From 
them it appears that our FDFD approach is able to 
give a very high accuracy, with a difference (with 
respect to the accurate data of [27]), which is 
smaller than 0.02% in most cases. 
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The computation time of the FDFD approach is 
the sum of the matrix filling time and the time 
needed to extract eigenvalue and eigenvectors of 
the sparse matrix. For example, for a grid with 

0.0040u� � , 0.0009v� �  and 1010000 points, the 
filling matrix time is 2,07 sec and the time to extract 
eigenvalue and eigenvectors is 93.02 sec. 
 
Table 1: Relative error on normalized TE cut-off 
wavelengths, with respect to [27], for the guide of 
Fig. 4, 0.0078u� � , 0.01755v� �  

TE C a�  
[27] 

C a�  
Our Code 

Relative 
Error % 

1 2.656401 2.656343 0.0022 
2 6.836981 6.835793 0.0174 
3 9.544562 9.540887 0.0385 

 
Table 2: Relative error on normalized TM cut-off 
wavelengths, with respect to [27], for the guide of 
Fig. 4, 0.0078u� � , 0.01755v� �  

TM C a�  
[27] 

C a�  
Our Code 

Relative 
Error % 

1 14.283213 14.280411 0.0196 
2 14.299466 14.297190 0.0159 
3 19.561598 19.545863 0.0804 

 
Table 3: Relative error on normalized TE cut-off 
wavelengths, with respect to [27], for the guide of 
Fig. 4, 0.004u� � , 0.0017v� �  

TE C a�  
[27] 

C a�  
Our Code 

Relative 
Error % 

1 2.656401 2.656366 0.0013 
2 6.836981 6.836941 0.0006 
3 9.544562 9.544720 0.0017 

 
Table 4: Relative error on normalized TM cut-off 
wavelengths, with respect to [27], for the guide of 
Fig. 4, 0.004u� � , 0.0017v� �  

TM C a�  
[27] 

C a�  
Our Code 

Relative 
Error % 

1 14.283213 14.283476 0.0018 
2 14.299466 14.300252 0.0055 
3 19.561598 19.558674 0.0150 

 
In Fig. 5, left, we show the potential 

eigenfunctions for the first three TE modes 
(corresponding to the data of Table 1). 

In order to show the flexibility of our approach, 
a different, ridged, sector has been considered. Only 

the eigenfunctions has been reported, since no 
analytic data is available. In Figs. 6 and 7 report a 
convergence analysis, with respect to the side of the 
discretization step. It appears that a fourfold 
reduction in v�  allows an accuracy increase of 
more than an order of magnitude. The behavior 
respect to u�  is different, since the structure is 
quite slender. 
 

 
 
Fig. 5. Lowest-order eigenvectors for the examples 
presented. Left: structure of Fig. 4. Right: ridged 
sectorial guide with 1 0.1u � , 2 0.74u � , 1 50v � 
 � , 

2 50v � � , and 3 0.1u � , 4 0.9u � , 3 10v � 
 � , 4 10v � � . 
 

 
 
Fig. 6. Relative error on the cut-off frequency of the 
first modes of an elliptic sector waveguide with 

0.0017v� � . 
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Fig. 7. Relative error on the cut-off frequency of the 
first modes of an elliptic sector waveguide with 

0.01u� � . 
 

Finally in Fig. 8, we compare the present 
fourth-order FDFD with a lively second order one, 
with different discretization steps. Figure 8 shows 
clearly that the accuracy of a fourth order approach 
can be reached using a second-order one, but with 
at least four times the discretization points, and 
therefore a computational load larger by nurse than 
an order of magnitude. Therefore, the proposed use 
of a fourth-order approximation is a significant 
improvement with respect to [26]. 
 

 
 
Fig. 8. Comparison of fourth and second order 
FDFD for the comparison of the tk of the first TE 
modes for the structure of Fig. 4, for different 
discretization steps, � 	0.004, 0.0017u v� � � � . 
 

IV. CONCLUSION 
An approach to the FDFD computation of 

modes of an elliptic ridged waveguide has been 

presented. We describe here a fourth order finite 
difference frequency domain approach to the mode 
computation for both TE and TM modes. An 
elliptic mesh has been used in order to avoid 
staircase approximations of the boundary. The 
presented results show both the flexibility of the 
method, as well as its simplicity for the 
computation for TE and TM modes in an elliptic 
ridged waveguide. 
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