
A Three-Conductor Transmission Line Model for MOS Transistors 

F. Daneshmandian, A. Abdipour, and R. Mirzavand 

Electrical Engineering Department, Institute of Communications Technology and Applied Electromagnetics 
Micro/mm-wave & Wireless Comm. Research Lab, Amirkabir University of Technology, Tehran, 15914, Iran 

f.daneshmandian@yahoo.com, abdipour@aut.ac.ir, rmirzavand@aut.ac.ir 

Abstract ─ An accurate high frequency small signal 
model for MOS transistors is presented. In the proposed 
model, by considering the layout of the MOS transistor, 
it is considered as a three-conductor transmission line. 
Then, a set of current-voltage equations are derived for 
the structure using the transmission line theory. These 
coupled equations are solved by the Finite-Difference 
Time-Domain (FDTD) technique in a marching-in-time 
process. To verify the model, the scattering parameters 
of a 0.13 �m transistor are extracted from the time 
domain results over the 1–100 GHz frequency band and 
compared with the results obtained from the available 
models and commercial simulator. The suggested 
model can be useful in design of various types of high 
frequency integrated circuits. 

Index Terms ─ CMOS technology, distributed analysis, 
FDTD method, MOSFET model, transmission line 
model. 

I. INTRODUCTION 
The increasing demand of implementing low cost 

monolithic microwave integrated circuits leads to 
significant advancement in CMOS technology [1,2]. On 
the other hand, by increasing the operating frequencies, 
the modeling issue in such high-density integrated 
circuits becomes more imperative. For accurate device 
modeling an electromagnetic interaction must be taken 
into account, especially when the device dimension is 
on the order of the wavelength [3]. In such cases, 
distributed modeling approach can be used to consider 
the wave propagation effect along the MOS transistors. 
Distributed analysis method is based on the 
transmission line model of the transistors. 

Distributed modeling of field effect transistors in 
the case of GaAs MESFET was previously studied 
[4,5]. In these studies the transistor is considered as a 
multi-conductor active transmission line. Also, 
transmission line modeling of transistor in the case of 
MOS transistor was formerly investigated [6-9], but in 
all these reports only the distributed effect of gate 
electrode of the MOS transistor are considered. In this 
paper, the approach used for MESFET transistor 

modeling is utilized for distributed modeling of MOS 
transistor based on three coupled transmission lines in 
CMOS technology, so the more accurate model for 
MOSFETs are achieved compared to the earlier models. 
In this approach, the transistor width is divided into a
discrete number of segments and then by considering 
the proper equivalent circuit for each segment, the 
required equations for analysis of the transistor can be 
obtained. In other words, the transmission line theory is 
applied to each segment of transistor to obtain the wave 
equations in the MOS transistor structure [10-12]. To 
solve the attained system of active multi-conductor 
transmission line differential equations, a suitable 
method must be chosen. Since the time domain 
analytical solution doesn’t exist for these equations, the 
finite-difference time-domain (FDTD) method, as a 
powerful and versatile numerical method is utilized for 
solving them [13-15]. The parasitic capacitances and 
inductances of the MOSFET model are numerically 
computed by solving the two-dimensional electrostatic 
field problem in the cross section of each transmission 
lines. By considering the layout of Fig. 1 and proposing 
that three electrodes of the transistor are placed on the 
600 um silicon substrate, per unit-length capacitances 
and inductances in the MOSFET model are achieved by 
using finite difference method. Using these values in 
distributed model, results of proposed approach,
Cadence SpectreRF simulator, lumped model, and an 
analytical approach which is based on the gate electrode 
distribution [9] are compared. It is shown that at low 
frequencies, the results of various models are the same 
while at higher frequencies, difference between them 
increases. It is expected that the distributed analysis 
describes the MOSFET behavior more accurate because 
of considering the wave propagation. 

II. DISTRIBUTED SMALL SIGNAL FOR 
MOSFETS 

The width of a MOSFET becomes in the order of 
wavelength at high frequencies and wave propagation 
along its electrodes must be considered. To investigate 
this distributed effect, a MOS transistor can be modeled 
as three coupled transmission lines on a silicon 
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substrate while assuming the magnitude of longitudinal 
electromagnetic field is negligible with respect to the 
transverse one. Therefore, the device electrodes can be 
considered in just the dominant quasi-TEM mode. For 
numerical simulation, transistor’s electrodes must be 
divided into some segments in propagation direction 
while considering active and passive equivalent circuit 
for each part, as shown in Fig. 2. The active part 
describes the small signal behavior of intrinsic device, 
and the passive part indicates electromagnetic 
interaction between electrodes. All parameters in the 
active and passive parts are per unit-length values. In 
the limiting case of 0z* 0 , using Kirchhoff’s circuit 
laws in the circuit of Fig. 2 for drain, gate, and source 
currents and voltages, i.e., dI , dV , gI , gV , and sI , sV , 
respectively, we have [4,5]: 
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Using gV &  as the voltage on gsC , another equation can 
be written as: 
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Equations (1)-(6) can simplify to matrix form of: 
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Fig. 1. The layout of a 130 nm CMOS technology. 

Fig. 2. A MOSFET and its partial equivalent model. 
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In order to apply the FDTD method to above 
equations of the MOSFET, total length and simulation 
time are divided into Nz and Nt sections with length of 

z*  and t* , respectively. Adjacent voltage and current 
points are separated by half of z* and half of t* , as 
illustrated in Fig. 3. Then, applying FDTD to (9) and 
(10) leads to: 
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Solving (14) and (15) gives the required recursion 
relations for computing voltages and currents in each 
interior point on the transistor electrodes as: 
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Fig. 3. The current and voltage solution points in space 
and time for the FDTD analysis. 
 

Equations (18) and (17) are calculated in order 
with marching manner to obtain voltage and current 
along the electrodes. To find the boundary conditions, 

voltage and current at the beginning of transistor can be 
written using (18) and circuit of Fig. 4 (a) as: 
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Then, equations (19) and (20) give a boundary value as: 
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Similarly, from (18) and Fig. 4 (b) we have: 
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which give another boundary value as: 
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 (a) Source (b) Load 
 
Fig. 4. Discretization at source and load terminals. 
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Now, we can start with an initially relaxed line 
having zero voltage and current values and find the 
voltages by equations (22), (18), and (26). It must be 
noted that to have a stable numerical solution, the space 
and time steps must satisfy the Courant condition [16]:

/t z v* A * , (27) 
where v is the maximum velocity of wave propagation 
along the electrodes of transistor. 

In this modeling approach the intrinsic parameters 
of MOS transistor including gm, Cgs, Cds, Cgd, Ri, and 
Gds are computed based on the accurate physical based 
model of the MOSFET, BSIM3v3. In this model, the 
drain-source current in all regions is expressed as 
follows: 
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By using the drain-source current, the transistor 
conductance Gm can be obtained as: 
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Also, all capacitances are derived from the charges 
to ensure charge conservation as: 
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where the terminal charges Qg, Qb, Qs, and Qd are the 
charges associated with the gate, bulk, source, and drain 
terminals, respectively. The details of this model 
containing other equations and the parameters 
description are given in [17]. 

III. RESULTS AND DISCUSSION 
In order to analyze the MOS transistor based on the 

discussed approach, a one finger MOSFET with gate 
dimension of 0.13×10 µm is proposed. A schematic of 
the proposed transistor and its relevant boundary 
condition is shown in Fig. 5. As shown, the beginning 
of gate electrode is connected to the source voltage VS
and resistance RS, and the end of drain electrode is 
connected to a load RL. In this example, both RS and RL
are considered to be 50 ohm. Furthermore, the end of 
gate electrode and the beginning of drain electrode are 
open, while both sides of the source electrode are 
grounded. 

The per-unit-length parameters of the intrinsic 
MOSFET are obtained at the Vgs=1.2 V and Vds=1.2 V 
bias point, using the BSIM3v3 model and applying 
scaling technique. The per-unit-length capacitance and 
inductance matrixes of the passive part of the transistor 
are numerically determined by solving the two-
dimensional electrostatic field problem in the cross 

section of each transmission lines based on the layout 
of Fig. 1. The per-unit-length resistances of the passive 
part of the MOSFET are achieved by considering the 
skin effect of the transistor electrodes [18]. The 
achieved parameters are listed in Table 1. The transistor 
is simulated by applying a small signal input voltage 
with amplitude of 0.05 V to achieve the voltages and 
currents of all points of the electrodes at different 
frequencies. 

Fig. 5. Schematic of simulated MOSFET. 

Table 1: The per-unit-length parameters of the passive 
part in the distributed MOSFET model 

Element The Per-Unit-Length Values
Ld 1.919 µH/m
Ls 1.919 µH/m
Lg 1.95 µH/m

Mgd 1.54 µH/m
Mgs 1.54 µH/m
Mds 1.407 µH/m
Rd 600 kΩ/m
Rs 600 kΩ/m
Rg 740 kΩ/m
Cgp 136.75 pF/m
Cdp 110.5 pF/m
Csp 110.5 pF/m
Cgdp 63.07 pF/m
Cgsp 63.07 pF/m
Cdsp 29.65 pF/m

The scattering parameters of the transistor are 
extracted from the time domain results at 1-100 GHz 
frequency band and compared with those of obtained by 
the analytical approach based on gate electrode 
distribution in [9], lumped model of the MOS transistor, 
and also simulator. Figure 6 and Fig. 7 show the 
magnitude and the phase of scattering parameters of the 
transistor, respectively. It seems that the results of 
distributed analysis based on three-conductor, one-
conductor and lumped models are in close agreement at 
low frequencies. But, by increasing the frequency, the 
difference between the results becomes larger. 
Especially at higher frequencies, the result of our 
distributed model is closer to the Cadence SpectreRF 
simulator result. Due to the fact that at high frequencies 
the transistor dimensions become comparable with the  
wavelength, difference between various modeling 
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approaches becomes more obvious. In such cases, the 
distributed analysis of the transistor based on three-
conductor transmission line can describe the behavior 
of the device at high frequencies more accurate than 
others. As the further work, to achieve more precise  

results, one can develop the discussed approach based 
on the nonlinear model of an intrinsic MOSFET and 
also used this model for distributed analysis and design 
of integrated circuits, so a monolithic analysis of the 
circuit can be realized. 
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Fig. 6. The magnitude of scattering parameters of the MOS transistor: (a) S11, (b) S12, (c) S21, and (d) S22. 
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Fig. 7. The phase of scattering parameters of the MOS transistor: (a) S11, (b) S12, (c) S21, and (d) S22. 
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IV. CONCLUSION 
A small signal model for high frequency 

MOSFETs based on three coupled transmission lines 
structure is investigated. The relevant differential 
equations of that structure are derived and solved using 
the FDTD method. By applying the proposed approach 
to a 0.13 �m MOS transistor, the small signal 
parameters are obtained from the time domain results at 
1–100 GHz frequency band and compared with the 
conventional models. Results of the proposed 
distributed model show a close agreement with other 
models at low frequencies. But for the higher 
frequencies the differences become significant and the 
obtained result of proposed method is closer to the 
commercial simulator. Therefore, the three-conductor 
transmission line modeling of MOS transistors is more 
precise than other conventional approaches. 
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