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Abstract ─ This paper presents an electromagnetic 

coupling analysis of transient waves excited a rectangular 

cavity containing an interior scatterer coupled to an 

external scatterer through a slot. Based on the 

equivalence principle, time domain integral equations 

are established by enforcing the boundary conditions on 

the internal and external scatterers, the slot and the 

cavity walls. The method of moments is applied in 

space and time domains to solve the developed system 

of integral equations. The unknown coefficients of the 

electric and magnetic currents are approximated by the 

triangular piecewise functions associated with Dirac 

function as space basis. To obtain accurate and stable 

solutions, the Laguerre functions are used as temporal 

basis. Numerical results involving the coupling effects 

between the cavity components are investigated. The 

numerical results are found to be in good agreement 

with EM theory and literature. 

 

Index Terms ─ Coupling effect, equivalence principle, 

Laguerre functions, MoM, piecewise triangular functions, 

slot, TD-EFIE, transient electric and magnetic currents. 
 

I. INTRODUCTION 
In electromagnetic compatibility, it is interesting to 

model the coupling through a slot-aperture backed by  

a rectangular cavity. When the cavity is excited by 

internal field source, it acts as an aperture antenna that 

radiates in external region. The problem of coupling 

between this radiation element and some components 

close to the cavity can influence the integrity of 

communication system. Another typical problem is  

the evaluation of the current induced by incident 

electromagnetic fields through an aperture because this 

current may damage some critical components in the 

system. Also the response of the cavity through the slot 

can damage the equipments at the side of cavity. 

In order to tackle the two problems, many 

researchers have developed a lot of frequency domain 

methods for many cavity designs [1]-[5]. But, for the 

defense and security reasons, the transient response of 

these problems can be depicted easily in time domain. 

The transient response of the cavity through an 

aperture is obtained primarily by Inverse Fourier 

Transforms (IFT) [6]. An exact solution using this 

method cannot be found. Reference [7] solves the 

transient problem by using the singularity expansion 

method (SEM). Recently, the integral equations are 

formulated and solved in time domain using a time 

stepping technique [8]-[11]. That later suffers from the 

late-time instabilities. 

In this paper, we consider a communication system 

composed on a rectangular cavity backed slot containing 

an internal (probe) and external (thin wire antenna) 

scatterers. The latters are coupled through the slot. 

The aim of this work is to develop a general system 

of Time Domain Electric Field Integral Equations  

(TD-EFIE) based on the equivalence principle and the 

appropriate boundary conditions. In fact, when the 

cavity is excited through the slot by internal and/or 

external transient electromagnetic waves, we can apply 

the developed integral equations system to predict the 

transient responses of the structure and to study the 

physical coupling effects between the component of the 

designed system. 

In order to solve the proposed TD-EFIE by applying 

the Method of Moments (MoM) [12], we introduce a 

spatial and temporal testing procedures. The piecewise 

triangular functions [13] associated with Dirac functions 

are used as spatial basis functions. The present paper 

sets out to present an accurate technique to obtain  

stable solutions of the obtained TD-EFIE system using 

Laguerre polynomials as temporal basis functions  

[14]-[18]. The transient responses of the structure are 

compared to the results obtained by applying the B-

Spline functions as a temporal basis [22]. In fact, an 

accurate comparison of the two time approaches 

(Laguerre scheme and B-Spline scheme) in terms of 

complexity, accuracy and stability was presented in 

[22].  
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In this work and based on the results stemming 

from this comparison, a coupling between the thin wire 

antenna and the probe through the slot is studied using 

Laguerre functions. The space distributions of the 

currents are presented. 

The paper is divided in four sections. Section II 

presents the integral equations formulation in the time 

domain and the method of solving these equations. 

Numerical results are given in Section III. Section IV 

concludes the paper. 

 

II. TD-EFIE FORMULATION 
The geometry of the analyzed problem is depicted 

in Fig. 1, which consists of a cavity with a slot on its 

wall, located in the X-Y plan. A linear electric probe of 

the length 
pl  at the position  PP yx ,  is located inside 

the cavity at the distance D of the slot. Outside the 

cavity, we consider a thin wire antenna of the length 
Al  

vertically placed at the distance d from the cavity and 

located in parallel to the slot at the position  AA yx , . 

To investigate the radiation characteristics of the 

structure, we assume that: 

- The cavity walls, the antenna and the probe are 

considered as perfect conductors and very thin. 

- The antenna is excited by yEE


0101  . 

- The probe is excited by yEE


0202  . 

 

 
 

Fig. 1. The geometry of the problem. 

 

By involving the equivalence principle [19], an 

equivalent surface replaces the physical structure with 

equivalent magnetic current density radiating in free 

space over the slot. References [20]-[21] have 

demonstrated that the magnetic current density is 

moving an infinitesimal distance away from equivalent 

surface. Mathematical analysis of this step shows that 

the slot can be short-circuited. Therefore, two coupled-

equivalent problems are established (Fig. 2). In both the 

external and internal equivalent problems, we retain the 

sources in the region of interest. In Fig. 3, we represent 

the different domains: 

- 431 D  the external analyzed domain. 

- 432 D  the internal analyzed domain. 

Where 1  is the surface of the antenna; 2  is the 

surface of the probe; 
3  is the equivalent domain 

replacing the slot; 4  is equivalent surface replacing 

the cavity walls. In fact, the domain 
3  is the sub-

domain infinitesimally close to, but not coincident with 

4 . Over it remains not null the equivalent magnetic 

current. 

 

 
 (a) 

 
 (b) 

 

Fig. 2. The equivalent problem: (a) equivalent external 

problem, and (b) equivalent internal problem. 

 

 
 

Fig. 3. The different domains: cavity walls, slot, antenna 

and probe. 
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The external problem contains the equivalent 

magnetic current density 
sM


 and the unknown electric 

current 
1J


 (Fig. 2 (a)). The fields inside 4  are zero 

and outside are equal to the radiation produced by the 

incident field 
01E


 and scattered fields induced by 
sM


 

and 
1J


. These fields must satisfy the following boundary 

condition: 

 
1EnM s


 , (1) 

where 

 )()( 1011 JEMEEE scar

s

scar


 . (2) 

For the internal problem, as shown in Fig. 2 (b),  

the equivalent magnetic current density 
sM


 and the 

unknown electric current 
2J


 are selected so that the 

fields outside equivalent surface 4  are zero and inside 

are equal to the radiation produced by 
02E


 and the 

scattered fields )( 2JE scar


 and )( s

scar ME


 . These fields 

must satisfy the boundary condition (1), where, 

 )()( 2022 s

scarscar MEJEEE


 . (3) 

An alternate formulation of the TD-EFIE is applied 

in this paper to describe unknown equivalent magnetic 

current sheet over the slot and the unknown electric 

currents at the probe and the antenna. This formulation 

is based on the equivalence principle in addition to 

enforce the following boundary conditions: 

- The tangential magnetic fields are contentious 

through the slot aperture both inside and outside 

the cavity. 

- The source is considered at the bottom of the probe 

inside the cavity. 

- The source is considered at the center of the 

antenna outside the cavity. 

Taking into account the interaction between the 

probe, the antenna and slot we obtain the following 

system: 
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, (4) 

where 

   FME s

scar





1
, (5) 

 
iii

scar A
t

JE 






)( . (6) 

The magnetic vector and electric scalar potentials, 

iA


 and i , are expressed on the antenna (i=1) or the 

probe (i=2) which are mathematically given by: 

 
j

ij

C

R

i
i yxds

yxyxR

tyxJ
tyxA

i

ij




 


),(,'
)',',,(

),','(

4
),,(







, (7) 



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



i

ij

j

ij

C

R

i
i yxds

yxyxR

tyxq
tyx ),(,'

)',',,(

),','(

4

1
),,(


 , (8) 

where   is the permeability and C is the velocity of 

propagation of the electromagnetic wave in free space. 

The potential electric vector F


 is given by the 

time retarded integral equation involving the magnetic 

current 
sM


. It is mathematically obtained by application 

of the concept of electromagnetic duality for Maxwell 

theories: 

j

j

C

R

s yxds
yxyxR

tyxM
tyxF

j




 


),(,'
)',',,(

),','(

4
),,(

3

3

3







,(9) 

where 
sM


 is the equivalent density current vector 

along 
3  and   is permittivity of free space. The 

retarded time is expressed by C

Rijt  . The distance 

22 )'()'( yyxxRij   represents the interaction 

between the observation point jyx ),(  and the source 

point iyx )','( , as shown in Fig. 4. 

 

 
 

Fig. 4. The different distances between the observation 

and source points for the internal and external equivalent 

problems. 

 

For convenience of numerical computation [13], it 

is useful to derive the scalar and vector potentials from 

the sources terms by means of the Hertz vectors which 

does not have a time integral term. Hence, the electric 

current and the charge density can be expressed in 

terms of the single Hertz vector iG


: 

 ),,(),,( tyxG
dt

d
tyxJ ii


 , (10) 

 ),,(.),,( tyxGtyxq ii


 . (11) 

The magnetic current is also expressed by means of 

the Hertz vector L


:  

 ),,(),,( tyxL
dt

d
tyxM s


 . (12) 

By substituting (5)-(12) in (4), we obtain the 

following time domain integral equations system: 
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The TD-EFIE are solved in space and time 

domains by applying the Method of Moments (MoM) 

[12]. Firstly, the problem is converted to a discrete one 

by employing a system of appropriate space-time bases 

functions. Secondly, a testing procedure is applied to 

convert the discrete vector functional equation into a 

linear scalar system of equations. 

We start the space numerical procedure by the 

choice of suitable space basis functions in order to  

approximate the unknown Hertz vectors 
1G


, 
2G


 and L


. 

Indeed, the choice of the basis function strongly 

influences the properties of the MoM approximation of 

the unknowns. We define the spatial basis functions as 

the piecewise triangular functions [13] associated with 

Dirac function uHf i

j

i
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  , where, 
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The choice of the piecewise triangular function has 

the following advantages: it minimized the required 

computational and it leads to an accurate evaluation of 

the unknowns with few expansion functions.  

The goal of the association between the Dirac 

function and the piecewise triangular function is 

metalized the domains i  only. 

Now, we express the Hertz vectors 
iG


 and L


 in 

terms of vector basis functions 
nf


 and nn fnh


 , 

respectively: 
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Note that the axis of the antenna, the probe and the 

slot are divided into 1N , 2N  and 3N  equal sub-domains 

of which the space step is y . 

In order to discretize 4 , we divide the cavity 

walls in 
yx NNN 444   equal sub-domains whose  

the lengths are x  and y  along x-y directions, 

respectively. The functions 4

nf


 illustrated in Fig. 5 is 

given by: 
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Fig. 5. Testing function 4

nf


. 

 

We substitute (19)-(21) into (13)-(17), then we apply 

the spatial testing procedure, we obtain: 
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We assume that the unknown transient quantities 

 n

i

n lg ,  does not change appreciably within the segment 

y  so that C
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On the other hand, we consider the temporal 

procedure. In order to obtain stable and accurate 

solutions, a temporal basis functions derived from the 

Laguerre polynomials [14] is applied. The transient 

electric and magnetic coefficients introduced in (19) 

and (20) are expanded by: 
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where  an

i

an lg ,, ,  are the unknown coefficients; 

  ..0),( asta  is the temporal basis functions derived 

from the Laguerre function
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the term )(stLa  represents the Laguerre polynomial of 

order “a” and “s” is a time scaling factor [17]. The 

mathematical properties of these functions, the first and 

the second derivatives are introduced in [14]-[15]. 

In order to apply the Galerkin’s Method [12] in 

time domain, we substitute (30)-(33) into (23)-(27) and 

we apply the temporal testing procedure with )(stb , 

we obtain the following system: 
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We note that, we can change the upper limit of  

the sum (30) and (31) form   to “b” based on the 

orthogonality condition detailed in [14]: 
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The scalar product of the field v

mE  (28) by the 

Laguerre function of order « b » is given by: 
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In the system (32), we move the terms including 
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g  and 

bnl ,
, which is known for a<b to the right-

hand side. Rewriting the resulting equations in a simple 

form, we have: 
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The spatial matrices  ijij BA ,  and the retarded terms 

1

,bm
S , 2

,bm
S , 3

,bm
S , 4

,bm
K  and 4

,bm
H  are presented in appendix. 

Now, we write (34)-(38) in a matrix form: 
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It is important to note that the matrix A is not a 

function of the degree of the temporal testing function 

“b”. Therefore, we obtain the unknown coefficients by 

solving (39) as increasing the degree of temporal testing 

functions. Consequently, we solve the problem only in 

space for each degree of the Laguerre function. Finally, 

the transient currents are calculated by: 
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where A is the maximum order of the Laguerre function 

[16]. 

 

III. NUMERICAL RESULTS 
In this section, we present the different numerical 

results by applying the proposed formulation and we 

compared the latters with the results obtained by the B-

Spline scheme, developed in [22]. Thus, we consider 

the structure shown in Fig. 6. Their related parameters 

are presented in Table 1. The space parameters 

41,  iN i  are described in Table 2. 

 

 
 

Fig. 6. Structure of the problem. 

 

Table 1: Cavity parameters 

Symbol Quantity Value 

a Cavity width 0.346λ m 

b Cavity length 0.692λ m 

ls Slot length 0.048λ m 

(xs,ys) Center of slot (0.346λ, 0.173λ) 

lP Probe length 0.25λ m 

(xp,yp) Probe center (0.172λ, 0) 

lA Antenna length 0.25λ m 

(xA,yA) Position of antenna (a+0. 172λ,0) 

e Thickness 10-5 
In this table, we used same parameters of the cavity presented in [2] 

at the resonance frequency of 1.9 GHz. 

 

Table 2: Space parameters 

Symbol Quantity Value 

∆x Space step 2.73 10-4 m 

∆y Space step 5.46 10-4 m 

N1
Number of antenna 

sub-domains
lA/∆y 

N2
Number of probe 

sub-domains
Lp/∆y 

N3
Number of slot sub-

domains
Ls/∆y 

N4 
Number of cavity 

walls sub-domains 

(N4x,N4y)=(a/∆x,b/

∆y) 
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We assume that the probe (inside the cavity) is 

excited by the Gaussian pulse voltage generator )(tV  at 

the bottom. The antenna is also excited by )(tV  at its 

center. The source )(tV  is expressed by: 

   0
2

0)(
ttg

eVtV


 , (42) 

with parameters VV 10  , 1810  sg  and st 8

0 10 . 

We suppose that the antenna and the probe have same 

length  pA ll   and same radius e. 

The value of the time scale factor s is 910.2  and 

the number of Laguerre functions A is fixed at 80. The 

values of s and A are sufficient to get accurate 

solutions. In fact, the terms s and A are the Laguerre 

function parameters. 

In order to verify the results, we apply the B-Spline 

scheme developed in [22]. In fact, for the two schemes 

(Laguerre and B-Spline), we consider the case when the 

two antennas are excited by (42). The transient 

responses of the structure are depicted in Fig. 7 and  

Fig. 8. Thus, we clearly observe the good agreement 

between the results obtained by the two schemes.  

Consequently, we apply the Laguerre scheme 

developed in this paper to study the coupling between 

the components of the designed communication system. 

This scheme is unconditionally stable. The space and 

the time steps are not related as the most temporal 

techniques (FDTD, TLM, MOT). We obtain stable and 

accurate solutions. 
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Fig. 7. The transient response of the antenna: (a) the 

normalized electric current density at the instant 

t=1.33*10-9 s, and (b) transient electric current density 

at the center of antenna. 
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Fig. 8. The transient response of the probe: (a) the 

normalized electric current density at the instant 

t=1.33*10-9 s, and (b) transient electric current density 

at the top of the probe. 

 
A. Electric and magnetic currents distributions 

In order to describe the transient behaviors of the 

structure, three cases are considered: 

- The antenna and the probe are both excited. 

- Only the antenna is excited. 

- Only the probe is excited. 

The transient responses are determined at the 

center of antenna, at the bottom of probe and the center 

of slot. 

Figure 9 shows the space distribution of electric 

current density of the antenna. It is obvious that the 

peak of the electric current occurred at the center point 

as expected for the case when the antenna is excited. 

But when the antenna is unexcited, the current vanish. 

The transient response plotted, in Fig. 10, at the center 

of the antenna confirms the latter interpretation. 

The transient response of the probe is shown in 

Fig. 11 and Fig. 12; we should note that the peak of 

electric current occurred at the feed point and the 

amplitude vanish when the probe is unexcited. The 

miniature curve in Fig. 11 presents the coupling effect 

when the probe is unexcited and the antenna is excited. 

The magnetic current density is presented in space 

and time when the antenna and the probe are both 

excited in Fig. 13. 
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Fig. 9. The normalized electric current density of the 

antenna at the instant t=1.33*10-9 s. 
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Fig. 10. Transient electric current density at the center 

of antenna. 

 

 
 

Fig. 11. The normalized electric current density of the 

probe at the instant t=1.33*10-9 s. 
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Fig. 12. Transient electric current density at the top of 

the probe. 

 
 

Fig. 13. The normalized magnetic current density at the 

slot when the antenna and the probe are excited. 

 

B. Study of coupling through the slot depending on 

separate distances d and D 

In order to study the Antenna-Slot coupling and 

Probe-Slot coupling, we consider four separate distances: 

 1 0.018 a,d D d      2 0.146 a,d D d     

 
3 0.274 a,d D d      

4  0.875 a.d D d     

Starting by the study of the coupling effect of 

antenna and cavity as function of different distances d 

(the value of D is fixed in Table 1). 

Figure 14 represents the theoretical coupling 

between the antenna and the slot calculated via the 

matrix Aij. It is clearly that the coupling vanish from 

m500.0cd . The transient magnetic current plotted in 

Fig. 15 for different separated distances d confirms the 

theoretical results. We note that, if 
cdd  , the magnetic 

current does not change.  

To study the coupling between the cavity and the 

probe, we vary the separate distances D and we fix the 

distance d (Table 1). 

The coupling vanishes from m800.0cd  as 

presented in Fig. 16. This result is detailed in Fig. 17; 

but for the distance 4d , the current amplitude is non-

zero and a low variation is detected. This variation is 

due to the effect of the cavity walls which amplified the 

currents inside the cavity. 

Also, lower values of the electric current at the 

probe and the magnetic current at the slot are observed 

when the cavity size becomes larger (Fig. 18). 
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Fig. 14. Matrix coupling antenna-slot. 
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Fig. 15. Transient magnetic current at the center of the 

slot for various distances d. 
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Fig. 16. Matrix coupling between probe-slot. 
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Fig. 17. Transient magnetic current at the center of the 

slot for various distances D. 
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Fig. 18. Transient magnetic current at the center of slot 

for various cavity widths a=a1=0.55*λ, a=a2=0.69*λ 

and a=a3=0.75*λ. 

C. Study of coupling through the slot depending on 

slot length 

It is very important to study the coupling taking 

into account the length of the slot. Therefore, we vary 

the latter parameter and two cases can be defined. One 

hand, when only the probe is excited, the transient 

current density at the top of the antenna as shown in 

Fig. 19. The amplitude becomes more important when 

the length of the slot is increased. This result is 

confirmed by this shown in Fig. 10. 

On the other hand, when only the antenna is 

excited, the transient current density at the top of probe 

for the shorter slot is lower than the longer ones, as 

depicted in Fig. 20. 
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Fig. 19. Transient current at the top of the antenna when 

the probe is excited and for various lengths of slot. 
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Fig. 20. Transient current at the top of the probe when 

the antenna is excited and for various lengths of slot. 
 

IV. CONCLUSIONS 
The transient behaviors of communication system 

composed on rectangular cavity containing an interior 

scatterer coupled to an external scatterer through a slot 

were studied. A 2-D numerical time domain formulation 

based on the combination of the equivalence principle 

and the MoM has been successfully developed and 

applied to the designed system. 

The physical coupling effects between the 

components of the system through the slot have been 

provided depending on the separate distances and the 

lengths of the slot. Stable and accurate results have 

been found mainly with electric and magnetic currents  
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responses.  

This formulation can be extended to 3-D and 

applied for many complex structures. 
 

APPENDIX 
The spatial matrices ij

mn
A  and ij

mn
B  can be defined as: 

   C
R

bb
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mnij
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where 
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The retarded terms takes the following forms: 
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