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Abstract ─ Cable bundle is often the main radiation 

structure due to its length in automotive electrical or 

electronic systems. Random wire positions in a cable 

bundle is a challenge for the modeling in perspective of 

Electromagnetic Compatibility (EMC). This work 

addresses the uncertainty property of a cable bundle due 

to its random wire positions, through a stochastic-model 

approach. Random wire position distributions in a 

bundle adopt Gaussian norm. A spline interpolate 

function is used to improve the continuity of wires along 

the bundle. To calculate the common-mode (CM) current 

on the bundle, the composed non-uniform wires are 

modeled by cascaded uniform segments or Chebyshev 

Expansion Method based smooth lines. Further CM 

current based bundle radiation is calculated using 

electric-dipole model. Proposed modeling methodology 

is assessed by comparing CM current and radiation 

predictions versus measurement data and theoretical 

results. Predictions agree well with measurements 

especially in statistics.  

 

Index Terms ─ Cable bundle, Electromagnetic 

Compatibility (EMC), Common-Mode (CM) current, 

radiation, statistics, stochastic-model. 

 

I. INTRODUCTION 
In the ALSE method according to CISPR 25 [1], the 

long cable bundle is often the dominant radiation 

structure. To predict radiated emissions from this 

structure at early EMC design stage, a reasonable 

radiation model is necessary. However, in a real 

automotive bundle the variability of the wire positions 

along the bundle lead to difference in final radiation 

measurements. Modeling a highly-precise cable bundle 

is difficult due to its random wire position. Therefore, a 

stochastic model is promising to simulate this 

uncertainty. Recent works provided a variety of methods 

to model stochastic characteristics of a bundle, which 

can be divided to two main groups, according to different 

approximation approaches for non-uniform transmission 

lines [2]. The first group method is based on MTL theory 

to approximate a cable bundle with cascaded uniform 

segments. “Monte Carlo” method [3] is introduced to 

divide a cable bundle into non-uniform segments of 

which 2-D cross sections are identical, but the positions 

of the wires are randomly interchanged from segment to 

segment. This model produces geometrical conflicts due 

to the uncorrelated sequence of cross sections. The 

“Random Mid-point Displacement” [4] and “Random 

Displacement Spline Interpolation” [5] are employed to 

improve model precision. The second group method 

approximates the non-uniform transmission line by 

specific numerical method, for example “Taylor Series 

Expansion Method” [6], “Chebyshev Expansion Method” 

[7] and “Green Function Expansion Method” [8]. The 

common feature of these methods is to approximate non-

uniform transmission lines through smooth specific 

functions. However, the computation time is often long 

due to the applied high order approximation smooth 

functions. This work aims to investigate the influence to 

radiated emissions from random wire positions in a 

bundle. The wire position distribution with statistical 

manner is analyzed. Then, spline interpolation function 

is used to smooth position function of wires in a  

bundle. Cascaded approximation from the first group 

methodology and Chebyshev expansion approximation 

from the second group methodology are both applied to 

model a non-uniform transmission line. In essence, a 

stochastic cable bundle model is a set of deterministic 

non-uniform MTLs (Multiconductor Transmission Line) 

characterized with different TL (Transmission Line) 

parameters. Each deterministic MTL model could derive 

a deterministic solution of Common-Mode (CM) current 

distribution. Thereby, the stochastic radiation results can 

be calculated from a set of CM currents from non-uniform 

MTL models, which have different TL characteristic 

impedances and propagation constants. 

 

II. APPROXIMATION METHODS FOR 

NON-UNIFORM TRANSMISSION LINES 
In the MTLs, voltage and current on each wire are 

dependent on the other wires due to the coupling effects 
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between wires. Considering termination boundary 

conditions, a generalized two-port network representation 

for a MTL can be shown in Fig. 1. 
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Fig. 1. Characterization of multiconductor transmission 

line (N+1-wire) as a generalized two-port. 

 

Being analogy with two-wire transmission line, 

N×1-dimension vectors VS contain the effects of the 

independent voltage and current sources in the source 

network. While the N×N-dimension ZS and ZL matrices 

contain the effects of the impedance in the terminal 

networks. Chain-parameter matrix, which can be 

extended to represent (N+1)-wire MTL, is defined by 

[2]: 

cosh( ) sinh( )
ˆ

sinh( ) cosh( )

C

C

L L
L

L L

    
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Here Z′ and Y′ indicate per-unit-length impedance matrix 

and admittance matrix respectively; the characteristic 

impedance ZC and admittance matrices YC can be derived 

from trough diagonalizing Z′Y′ and Y′ Z′ simultaneously 

[9]. In order to achieve the final stochastic model for a 

cable bundle, the first step is to model non-uniform 

transmission line. Cascaded approximation and Chebyshev 

expansion approximation are both used to solve 

telegraphic equations of MTL.  

 

A. Cascaded approximation  

Non-uniform TLs indicate that the cross-sectional 

dimensions or the wires positions vary along the wire 

axis. In this work the latter is only considered, which 

means the proposed stochastic model is based on the 

assumption the cross-sectional dimension of the bundle 

is identical. Considering real automotive bundles, this 

assumption is reasonable. Due to the variability of  

wire positions, the per-unit-length impedance Z′ and 

admittance matrix Y′ of MTL become functions of 

position z, denoted by Z′(z) and Y′(z). Therefore the 

MTL with non-uniform TLs can be described by non-

constant coefficient differential equations: 

( ) ( ) ( ) 0z z z
z


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
V Z I , (2) 

( ) ( ) ( ) 0z z z
z


 


I Y V , (3) 

V(z) and I(z) are wire voltage and current vectors on the 

position z. Differential equations above is of great 

difficulty on the solution in mathematics, due to the 

nonlinearity property. Alternatively a set of short 

uniform sections could be a simple solution to represent 

the entire non-uniform MTL. This approach neglects the 

interaction between each two sections, but enough 

precision could be achieved through sufficient divisions 

of lines. Chain-parameter ˆ L   can associate the two 

port quantities of MTL as shown in Fig. 3: 
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(4) 

According to cascaded principle [2], the total chain-

parameter ˆ L   for entire wires can be calculated as the 
product of the chain-parameter of the individual uniform 

segments:  
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(5) 

Figure 2 illustrates the basic principle of breaking 

the non-uniform MTL into a cascade of sections, each of 

which can be modeled approximately as a uniform 

segment characterized by a chain-parameter matrix 

ˆ
i iz  . Due to each chain-parameter matrix associating 

voltages and currents of corresponding two ports, we can 

extract voltages and currents at interior points when 

MTL incorporated with terminal constraints at bundle 

ends. For example, the voltages and currents at the left 

port of the second subsection can be calculated from the 

terminal voltages and currents as: 

2
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(6) 
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Fig. 2. Cascade approximation of entire chain-parameter. 

 

B. Chebyshev expansion approximation 

Compared with cascaded approximation method, 

Chebyshev expansion method [7] provides different 

approach to model the non-uniform MTL. This method 

directly solve nonlinear differential equations of MTL in 

(2) and (3). For example, V(z) and I(z) are defined by 

column-vectors of wire voltages and currents in a N-wire 

MTL: 

 1 2( ) ( ), ( ), , ( ), , ( )
t

i Nz V z V z V z V zV , (7) 
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 1 2( ) ( ), ( ), , ( ), , ( )
t

i Nz I z I z I z I zI , (8) 

Z′(z) = [Zi, j(z)] and Y′(z) = [Yi, j(z)] are the N×N per-unit-

length impedance and admittance matrices. From these 

expressions, transmission line variables are functions  

of position z. In mathematics, any piecewise smooth  

and continuous function F(z) can be expanded into  

an infinite series of Chebyshev polynomial functions  

[Tk(z) = cos(kcos-1z)] [10]: 
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Thereby transmission line variables Vi(z), Ii(z), Zi,j(z) and 

Yi,j(z) can be approximated by Chebyshev series with 

(M+1) elements, respectively: 
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(10) 

where ( ) ,k

iV  ( ) ,k

iI  ( ) ,k

i, jZ  ( )k

i, jY  are Chebyshev 

coefficients. Using the vector notations the Chebyshev 

coefficients for wire voltage and current are defined by: 
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(12) 

Substituting voltage and current quantities by (11)-

(12), and implementing the orthogonal property and the 

multiplication rule of Chebyshev polynomial functions 

Tk(z), non-constant coefficient differential Equation (2) 

can be transformed into [7]: 

,

1

0
[ ] [ ] 0

0 0

N
M M

i i k kt
kM

Q
Z



 V I ,

 

(13) 

where [Zi,k], (k = 1, 2, …,N) are (M+1)×(M+1) matrices 

with (p,q)th element defined below: 

( ) ( 2 )

, , , ,

1
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(14) 

And 0M is an M×1 column vector with all zero elements 

and QM is an M×M matrix, which is defined in [7]. 

Assembling (13) for all k = 1, 2, …, N, we can obtain the 

matrix formulation for the N-conductor system: 

ˆ ˆ ˆ ˆ QV ZI 0 , (15) 
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(16) 

V̂  and Î  are N(M+1)×1 column based on wire voltage  

and current (7) and (8). Q̂  consists of N-block of 

(M+1)×(M+1) Q-matrix: 
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Ẑ  is constructed from the [Zi,k] matrix defined in (14): 
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Similarly, the transmission-line Equation (3) also 

can be transformed into following formulation: 

ˆ ˆ ˆ ˆ QI YV 0 . (19) 

Therefore, the non-linear differential Equations (2) and 

(3) of MTL can be approximated by (15) and (19) 

through Chebyshev expansion. Considering the 

incorporated termination conditions of the transmission 

lines network, as shown in Fig. 1, the Vs is the source 

matrix for N-conductor MTL, ZS and ZL are the 

impedance matrix of source and load terminations, we 

can obtain (20) through combining with (15) and (19). 

By solving equation system (20), Chebyshev coefficients 

V̂  and Î  in (16) can be obtained, which can be further 

used to calculate the wire voltages and currents via (10): 
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Here, ˆ
nE  is N×[N(M+1)] diagonal block matrix, of 

which each block is given by [7].  

 

III. STOCHASTIC RADIATION MODEL OF 

CABLE BUNDLE 

Stochastic model of a cable bundle, in essence, 

produces a set of deterministic non-uniform transmission 

lines randomly. The section above provides two different 

approximation approaches for a non-uniform transmission 

lines. This section discusses the wire position 

distribution norm via statistical manner, and proposes a 

determination method for the needed transmission line 

parameters in simulations. 

 
A. Stochastic distribution of wire position 

The wires positions in a cable bundle are usually 

difficult to be determined. However the wire beginning 

and the wire end connected to terminations are definite. 

Moreover, initial wire positions in a cable bundle are 
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distributed stochastically, but they are limited by the 

radius of cable bundle, as shown in Fig. 3 (a).  

Here, z is the wire axial coordination; x and y are  

the cross-sectional coordination. In mathematics, a 

deterministic position distribution can be produced 

according “Gaussian” law instead of an absolute random 

position. After determining initial positions, other more 

positions can be interpolated through Spline function, 

which can improve the continuity of final constructed 

wire model [5], as shown in Fig. 3 (b). When the 

coordinates of variable wire positions are determined, 

cascaded method can further approximates the wire as a 

set of uniform sub-segments; or Chebyshev expansion 

method provides other solution to fit non-uniform 

transmission lines through smooth Chebyshev polynomial 

functions, as shown in Fig. 3 (c).  
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Fig. 3. Process illustration for modeling random wires 

position in a cable bundle. 

 

B. Per-unit-length parameters 

Varying wire positions in a bundle lead to non-

constant of impedance and admittance matrix in 

telegraphic Equations (2) and (3). Numeric methods such 

as Finite Element Method (FEM) could acquire these 

parameters accurately. However, the computation time is 

a challenge, due to the cable bundle possibly consisting 

of dozens of wires for each deterministic non-uniform 

MTL case. Thereby, a simple approach for the TL-

parameters determination is necessary. When the 

diameters of all the wires inside the bundle are the same 

and 2-D cross section of the bundle is invariant along the 

axial direction, the evaluation of Z′(z)&Y′(z) matrices 

only needs to be performed once. And then these 

determined Z′(z)&Y′(z) matrices can be used as basis for 

evaluating new impedance and admittance matrices for 

other segments with different wire positions. Figure 4 

gives the ‘wire method’, which illustrates how to obtain 

new Z′(z)&Y′(z) matrices from the known impedance 

and admittance information [11].  
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Fig. 4. Per-unit-length parameter matrix interexchange 

with ‘wire method’. 

 

For implementing this method, we first determine 

the original coordinates of wires center in a cable bundle 

with known Z′(z)&Y′(z) matrices. Then “Gaussian” law 

is used to produce stochastic coordinates of wire center 

positions. Through comparing the distance between new 

coordinate of wire center to original wire centers, we 

choose the original wire center, of which the distance is 

shortest to the new coordinate, as the new position of the 

wire. 

 

C. Common-mode current and radiation model 

After determining the parameters matrices of the 

cable bundle, telegraphic Equations (2) and (3) of non-

uniform MTL can be solved equivalently by ‘Cascaded 

approximation method’ or directly through ‘Chebyshev 

expansion method’ for each deterministic case in 

stochastic analysis. Subsequently CM current at each 

segment, the sum of currents on the wires in this 

segment, can be calculated. And then each segment with 

known CM current can predict the radiated emission 

according to electric dipole model [12]. For example the 

y-component field is given by: 
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(22) 

where r is the distance from the dipole to the observation 

point P; ε0 is the dielectric constant of the vacuum; dL is 

dipole length; I is the current through the modeled 

segment; η0 (377 Ω) is the wave impedance in the 

vacuum; β0 (2π/λ) is the electromagnetic wave phase 

constant in the vacuum. Radiation from a cable bundle 

can be calculated by superposition, as shown in Fig. 5. 

Therefore, stochastic radiation model of a cable bundle 

should include a set of deterministic radiation models  
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with different CM current distribution.  
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Fig. 5. Radiation from a cable bundle due to CM current. 

 

IV. RESULTS AND EXPERIMENTS  
In order to verify the proposed cascaded method and 

Chebyshev expansion method for modeling a non-

uniform transmission line, a MTL model with analytic 

solution is investigated firstly, of which transmission 

line parameters are parabolic functions with respect to 

the position. Moreover, the stochastic characteristics of 

a real cable bundle with random wires are evaluated 

through simulation and measurement. 

 

A. Parabolic multiconductor transmission line 

MTL with terminations can be shown in Fig. 6 (left). 
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Fig. 6. Parabolic MTL with terminations (left) and its 

common-mode radiation model (right). 

 

The parabolic transmission line parameters are 

characterized by the functions with position z: 
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(24) 

We analyze a general parabolic coupled transmission 

lines of the tapering factor a = 0.1, line length L = 2 m 

and r(ω) = r0 + r1√ω for simulation of the skin-effect [13]. 

In cascade approximation method, the line is divided into 

100 short segments. While in Chebyshev expansion 

method, the transmission line parameter matrices  

Z′(z, jω)&Y′(z, jω) in (23) are expanded into 30 

Chebyshev polynomial functions of position z at each 

frequency point according to (9). Since the high-order 

Chebyshev polynomial function might bring computation 

efficiency problem, cascaded approximation for non-

uniform MTL takes more advantages when the bundle 

divided into enough short segments. Figure 7 depicts 

current at the middle position on line-3 by cascaded 

method, Chebyshev expansion method and analytic 

method from 1 MHz to 500 MHz, respectively. The 

analytic solution is referred to [14].  

 

 
 

Fig. 7. Current at the middle position on line-3. 

 

Currents on the line-3 at 200 MHz from these three 

methods are compared in Fig. 8. After obtaining currents 

on each line, CM current can be calculated by summing 

these line currents. Then, the radiation from the 

transmission lines can be evaluated with a set of short 

dipoles as shown in Fig. 5. Electric field in y-direction at 

the observation point (1 meter distant to the cable bundle) 

is further calculated as shown in Fig. 9. It can be seen 

that the results from proposed methods can match well 

with the analytic method.  

 

 
 

Fig. 8. Current of 200 MHz on line-3. 

 

 
 

Fig. 9. Radiated emission at the observation point from 

parabolic transmission lines. 
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B. Cable bundle with random wires 

In this section, CM current distribution and radiated 

emissions from a real cable bundle with seven random 

wires are investigated. Average height of the cable 

bundle to the ground plate is 5 cm. Diameter of each wire 

in the bundle is 1.2 mm, and the conductor diameter is 

about 0.8 mm. The detailed geometry of 2D cross section 

of bundle and experimental setup are shown in Fig. 10. 
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Fig. 10. Simulation and measurement configuration for a 

cable bundle with random wires. 

 

The wires are terminated randomly with different 

resistors. In source box, one wire is driven by port 1 (P1) 

of a vector network analyzer (VNA); Port 2 (P2) of VNA 

is connected to a short rod antenna to measure electric 

field or a current probe to measure CM current. In the 

simulation and experiment, 140 different scenarios with 

random wire positions are implemented stochastically. 

Considering simulation efficiency, non-uniform 

transmission line in each scenario is approximated  

by the cascaded method. And the bundle is divided  

into 100 small segments. The random packed wires in 

cable bundles lead to non-deterministic wire position 

distributions in the cross sections. Stochastic non-uniform 

wire is difficult to be modeled via MoM and other 

numeric methods. Therefore with a certain stochastic 

function to describe random wire position, a set of 

deterministic non-uniform MTL can be obtained. Each 

non-uniform MTL produces a solution according to 

proposed cascaded approximation method and per-unit-

length parameter deterministic method proposed above. 

Here stochastic-simulation sample number is 140 and 

total simulation time is 3.09 hours. To verify the proposed 

bundle stochastic-model, 140 different measurements 

were implemented through changing wire positions 

manually. CM currents at start point (beside source box), 

middle point and end point (beside load box) of the 

bundle were simulated and measured with a RF current 

probe. E-field at the observation point was also calculated 

and measured through a short rod antenna. Figure 11 

shows the simulated and the measured stochastic-data 

distribution from 1 MHz to 1000 MHz. Maximal, mean 

and minimal envelop of these data are denoted. From 

these curves, envelop magnitudes and the main resonance 

frequencies from simulations and measurements agree 

well, which means the stochastic characteristic of a real 

cable bundle is close to proposed simulation model. 

 

 
 Simulation Measurement 

 (a) CM current at the start point 

 
 Simulation Measurement 

 (b) CM current at the middle point 

 
 Simulation Measurement 

 (c) CM current at the end point 

 
 Simulation Measurement 

 (d) E-field at observation point 

 

Fig. 11. Simulation vs. measurement of common-mode 

(CM) currents and E-fields from the stochastic scenario. 

 

Further we compared the maximal, mean and 

minimal envelops of CM current at the bundle middle 

point from simulation and measurement stochastic data 

in Fig. 12. Basically simulated maximal and mean 

envelopes from 1 MHz to 1000 MHz can match well 

with measurements; minimal envelop except below  

20 MHz can also agree well with measurements. However, 

the simulated peaks on the maximal and mean envelopes 

are higher than the measured peaks at frequencies of  

N•200 MHz (N = 1, 2, 3, 4, 5). The reason for the 

deviation is that MTL based simulation in this work did 

not consider line loss and the parasitic capacitance and 

inductance in source and load box. 
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Fig. 12. Statistical analysis (Max, Mean, and Min) of CM 

current at the middle point on the cable bundle. 

 

Probability density function (PDF) [15] and 

cumulative distribution function (CDF) [16] were also 

evaluated from simulated and measured CM current 

stochastic data. These two statistical indicators at  

250 MHz were shown in Fig. 13. It can be seen that PDF 

from measured data express the normal distribution with 

mean value of 55.64 dBμA, while simulation mean value 

of 53.25 dBμA. CDF curves from simulated and measured 

data are close, which can indicate possible maximal 

boundary. Appearance of maximal value of common-

mode current simulation data at middle point of  

cable bundle (250 MHz) locates at 60.35 dBμA; while 

appearance of maximal measured data locates at  

63.22 dBμA. Similarly the maximal, mean and minimal 

envelopes of electric field at observation point from 

simulation and measurement stochastic data were 

compared in Fig. 14. These envelopes of electric field 

from 30 MHz to 1000 MHz agree well between 

simulated data and measured data. At low frequencies, 

since the used electric dipole model is sensitive to the 

current accuracy, the relative small error of dipole 

current might lead to a big difference at electric fields. 

Furthermore, the lower is the frequency; the bigger is the 

field deviation. This error can be also observed in the 

verification example used in [5]. Further PDF and CDF 

of stochastic electric field at 250 MHz from simulated 

and measured data are shown in Fig. 15. It can be seen 

that PDF from measured data expresses the normal 

distribution with mean value of 81.29 dBμV/m, while 

simulated mean value of 84.03 dBμV/m. From CDF 

curves from simulated and measured data, appearance of 

maximal value of simulation data locates at 91.03 dBμV/m; 

while appearance of maximal measured data locates at 

94.52 dBμV/m. From simulated data, the stochastic wire 

position distribution (standard Gaussian rule applied in 

simulation) can result in CM current and field distribution 

obeying to lognormal rule; while from the real measured 

data, stochastic CM current and field due to random wire 

position changed manually also obey log-normal rule, 

but with different means and standard deviations 

compared with simulated data. Therefore it can be 

concluded that the stochastic radiation behavior of a real 

cable bundle due to random wire positions meets log-

normal rule. 

 

 
 

Fig. 13. Statistical analysis (PDF and CDF) of CM current 

at the middle point on the cable bundle (250 MHz). 

 

 
 

Fig. 14. Statistical analysis (Max, Mean, and Min) of E-

field at the field observation point. 

 

 
 

Fig. 15. Statistical analysis (PDF and CDF) of the E-field 

at the field observation point (250 MHz). 

 

V. CONCLUSION 
In this work, stochastic simulation models of a  

cable bundle were proposed based on two different 

approximation approaches for non-uniform transmission 

lines: cascaded approximation method and Chebyshev 

expansion method. Stochastic cable bundle model, in 

essence, included a set of deterministic non-uniform 

MTL due to random wire positions. Each non-uniform 

MTL can be approximated by the cascaded method 

through dividing them into short uniform segment; or the 

non-linear differential Equations (2)–(3) were directly 

solved by Chebyshev polynomial expansion method. 

This two approximation methods essentially differ from 

each other. One method divided the non-uniform MTL 

into small uniform segments physically, hence it might 

induce discontinuity between each two adjacent 

segments. The other method approximated non-linear 

parameters of differential equations mathematically,  
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thereby the high order approximation smooth polynomial 

functions might have computation efficiency problem. 

Both approximation methods were verified through a 

parabolic MTL with analytic solutions. Subsequently, a 

more general cable bundle was investigated through 

simulation and experiment in perspective of statistic.  
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