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Abstract ─ Traditional method using integral of the 

Bessel and Struve functions is not suitable for 

calculating the mutual inductance between two coplanar 

disk coils. Considering the monotonicity of modified 

Bessel and Struve functions, an alternative method 

using these monotonic functions is applied to calculate 

the mutual inductance, and numerical evaluations can 

be accelerated considerably. Series solutions using the 

generalized hypergeometric functions are further 

obtained by solving the infinite integrations, and these 

series are compared with the aforementioned integral 

methods. The numerical results show that the series 

solutions are much more faster than the integral ones, 

and with the series method, results of very high 

accuracy can be obtained within a small fraction of one 

second in most cases. Furthermore, we point out and 

prove the existence of the decoupling positions at which 

the mutual inductance will vanish. 

 

Index Terms ─ Disk coils, generalized hypergeometric 

function, modified Bessel functions, mutual inductance. 

 

I. INTRODUCTION 
Disk coils are broadly applied in the electrical 

instruments, especially in recently popular areas such as 

the wireless power transmission, in which the disk coils 

are essential components and the mutual inductance of 

the coils is very important for optimization of the 

efficiency of the power transmission [1-3]. However, 

mutual inductance calculations of the disk coils are 

relatively difficult compared with that of the long 

circular coils (e.g., the thin-wall solenoids). For two 

coaxial thin-wall solenoids, the mutual inductance can 

be solved in closed-form by the complete elliptic 

integrals [4, 5], but for two coaxial disk coils, it seems 

unlikely to obtain accurate closed-form solution and so 

far the mutual inductance must be solved by the integral 

of inverse trigonometric functions [6] or that of Bessel 

and Struve functions [7, 8]. Only for the concentric 

coplanar disk coils closed-form expressions are 

obtained [9]. In the general non-coaxial case, the 

solution is given in [6] by integral of Bessel and Struve 

functions and it can be described as follows. 

Two disk coils are located in the parallel planes 

with distance z0, and their axes are separated by a 

distance r0. One coil has N1 turns and the inner and 

outer radii R1, R2, the other has corresponding 

parameters of N2, R3, R4 (See Fig. 1), then the mutual 

inductance of them is given by: 
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where 

          1 0 0 1 ,w r r J kr kr J kr kr   H H  (2) 

with special functions Jn(x) and Hn(x) listed in Table 1. 

 

Table 1: Special functions applied 

Symbol Special Function 

Jn(x) Bessel function of the first kind of order n 

In(x), Kn(x) 
Modified Bessel functions of the first and 

second kind of order n 

Hn(x) Struve function of order n 

Ln(x) Modified Struve function of order n 

pFq(a; b; x) Generalized hypergeometric function 

(x)n Pochhammer symbol 

Γ(x) Gamma function 

 

r0

R1

R2

R3

R4

z0

 
 

Fig. 1. Side view of two disk coils with parallel axes. 

 

When z0 is not too small, (1) is proper for the 

evaluation of the mutual inductance of disk coils since 
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the exponential factor will decrease rapidly in 

magnitude as k→∞. However, for small values of z0 the 

numerical performance of (1) will become worse, 

especially for the coplanar case, the efficiency of (1) is 

in fact doubtful for the numerical evaluations. On the 

other hand, if we admit the transcendental nature of (1), 

we can then seek the series solutions of (1) rather than 

the closed-form ones and we will see that this 

consideration is achievable for (1) with z0=0. In this 

work, for the non-coaxial coplanar disk coils the mutual 

inductance will be given in the form of series of 

generalized hypergeometric functions which will lead 

to a high speed and accuracy method for the numerical 

evaluations of the mutual inductance of these coils. 

In addition, alternative representations of the 

mutual inductance using the modified Bessel and 

Struve functions will be introduced, which can be 

derived from the alternative forms of the eigenfunction 

expansion of the reciprocal distance [10-13] from 

which the proposed series expressions will be derived. 

The monotonic nature of the modified Bessel and 

Struve functions may be beneficial to numerical 

integration of the expressions of mutual inductance. 

Without these alternative methods, it will be nearly 

impossible to compare the proposed method of series 

type with that of integral type, since when z0=0, the 

evaluation of (1) is extremely time-consuming and the 

results of high accuracy are very difficult to obtain. 

 

II. FORMULATIONS OF MUTUAL 

INDUCTANCE 

A. Mutual inductance of coplanar disk coils with 

r0≥R2+R4 

According to the Neumann formula, the mutual 

inductance of two coplanar disk coils with dimension 

parameters given in Section I is (See Fig. 2): 
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where 
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Using the expansion of reciprocal distance in the 

cylindrical coordinate [10], 
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and 
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is the Neumann’s factor [14]; the following results of 

the mutual inductance can be obtained: 
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where r0≥R2+R4, and 
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where 0≤r0≤R3－R2, with 

          1 0 0 1 ,u r r I kr kr I kr kr   L L  (9) 

and 
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In(x), Kn(x) and Ln(x) are modified Bessel and Struve 

functions listed in Table 1. For the coplanar disk coils 

no overlap will occur.  

In addition, using the same technique of (4)-(6) we 

can obtain the mutual inductance of two disk coils 

without radial overlap: 
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where r0>R2+R4, and 
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where 0≤r0<R3 －R2. Expressions (11) and (12) are 

suitable for the disk coils with small z0 (the nearly 

coplanar coils), as the factor cos(kz0) is slowly 

oscillatory in this case. 

For r0≥R2+R4 we solve (7) to a series form. 

Applying the expression: 
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we have 
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Solving the infinite integral in (14) [15] we obtain: 
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By writing the Appell function F4 [16] as its power 

series and perform the remaining radial integrations 

term-by-term, we obtain: 
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Then by solving the summation with respect to m 

we get: 
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with 
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Finally we have the mutual inductance for 

r0≥R2+R4: 
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with f1(n, x) given by (18). 
 

 
 

Fig. 2. Plan view of two coplanar disk coils. 

B. Mutual inductance of coplanar disk coils with 

0≤r0≤R3－R2 

For the case of 0≤r0≤R3－R2, using (13) and the 

expression, 
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Then solve the remaining integrals in the similar 

manner we have: 
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It should be noticed that the general term Cmn  of 

(22) has the factor m+n in the denominator, hence m 

and n cannot vanish simultaneously, for the summation 

with respect to m, the lower index of n must be set to be 

1, i.e., 
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with 
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Then we consider the remaining terms Cm0. The 

term C00 is unusual and a limit process must be take: 
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The summation of the remaining terms Cm0 with m≥1 is: 
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Then combining (8) and (22)-(27) gives the mutual 

inductance for 0≤r0≤R3－R2: 
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Expression (28) may be a little complicated, and in 

fact a concise form can be found if we write (21) in 

another way. Using the formula [17]: 
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where 
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When n=0 the term Cn of (31) must be treated with 

a limit process as well: 
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Combining (8) and (31)-(33) gives an alternative 

form of the mutual inductance for 0≤r0≤R3－R2: 
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Expression (34) cannot be applied to the concentric 

case r0=0 but it can converge faster than (28) especially 

when r0 is very close to the value R3－R2. Letting z0=0 

in (1) and performing the integrations in a similar 

manner of (14) or (21), (19) and (28) can also be 

obtained. Letting r0=0 in (28), the term (26) will vanish 

and (23) can be solved to a closed-form of q+1Fq(a; b; x) 

and the result is: 
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with 
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and 
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This result of concentric coplanar case coincides with 

that given in [9]. 

 
III. DECOUPLING POSITIONS OF DISK 

COILS WITH PARALLEL AXES 

It is interesting to give some additional discussions 

for the contents described above. When r0≥R2+R4, from 

(7), (9) and (13) we have the mutual inductance of two 

coplanar disk coils: 
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 (38) 
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Considering K0(x) and I1(x) are always positive 

throughout 0<x<∞, it can be concluded that (38) is 

always negative for any pair of disk coils. On the other 

side, for the general case of disk coils with z0≠0, from 

(1) and, 
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2
,
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we have 
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For sufficient large z0 the following asymptotic 

relation holds [18]: 
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where 
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and 
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Hence, for very large z0 we have: 
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by omitting the terms of infinitesimal of higher order 

we can write: 
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for z0→+∞. Hence, for very large z0, (45) is always 

positive. As a corollary, (40) must also be positive 

when z0→+∞. Noticing the mutual inductance is the 

continuous function of z0, the following assertion can 

be obtained immediately. 

For any given pair of disk coils with parallel axes 

and r0≥R2+R4, there is at least one zero point of z0, at 

which the mutual inductance M will vanish, i.e., the 

disk coils will be decoupled magnetically in this 

decoupling position. 

 
IV. NUMERICAL EVALUATIONS 

A. Coplanar disk coils with r0≥R2+R4 

In case of r0≥R2+R4, the numerical validation of (7) 

and (19) will be implemented by using the following  

dimension parameters of the disk coils: R1=0.2 m, 

R2=0.8 m, R3=2 m, R4=3.5 m. The turns of both coils 

are irrelevant, since the normalized value M/(N1N2) will 

be calculated. The results are given in Table 2. ta and tb 

are the computation time of (7) and (19), respectively, 

to obtain the same values in the second column of  

Table 2. The calculations were coded in Mathematica 

and implemented on a personal computer with a 3.4-GHz 

processor. As r0 increases, both ta and tb decrease, and 

this is just contrary to the nature of (1). As long as the 

computation time is less than 1ms (which is the default 

minimum time interval of the timing program), it will 

be omitted automatically by the program and we will 

record it as “t<0.001s”. We can see that tb is always less 

than 1 second except for the case of r0≤4.4 m. The 

superior performance of the series expression (19) can 

be proved sufficiently. When r0= R2+R4=4.3 m, both (7) 

and (19) are not efficient enough and we just give  

a result of 4 significant figures evaluated by (7): 

M/(N1N2)=－65.08nH, with the computation time of 

1228.929s, and that of 7 significant figures evaluated by 

(19): M/(N1N2)=－65.08078nH, with the computation 

time of 18.658s. In addition, the evaluations of (1) with 

z0=0 is extremely time-consuming so the computation 

time of it is not included in Table 2, but we can give a 

example here: for r0=4.8m, it takes about 1253s to get a 

result of 5 significant figures: M/(N1N2)=－35.273nH. 

 

Table 2: Performance of the mutual inductance for 

coplanar disk coils of R0≥R2+R4 evaluated with (7) and 

(19) 

r0 

(m) 

M/(N1N2) 

(nH) 

ta 

(s) 

tb 

(s) 
ta /tb 

4.4 －56.064144480280 1941.713 1.404 1382.986 

4.5 －49.190311789750 402.061 0.608 661.285 

4.6 －43.669129789264 265.592 0.234 1135.009 

4.7 －39.109839095754 187.217 0.156 1200.109 

4.8 －35.273252555243 5.803 0.109 53.239 

5.2 －24.550774873203 5.772 0.062 93.097 

5.5 －19.428031335091 4.181 0.047 88.957 

5.7 －16.840560836502 4.009 0.047 85.298 

6.0 －13.806335361406 3.947 0.031 127.323 

6.5 －10.251166170897 3.869 0.031 124.806 

7.0 －7.861716936199 3.838 0.016 239.875 

8.0 －4.962362649715 2.418 0.016 151.125 

9.0 －3.353222796361 2.168 <0.001 >2168 

10.0 －2.380250924534 2.153 <0.001 >2153 

 

B. Coplanar disk coils with 0≤r0≤R3－R2 

In the case of 0≤r0≤R3－R2, the numerical validation 

of (8), (28) and (34) will be implemented by using the  
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same dimension parameters as before: R1=0.2 m, R2=0.8 m, 

R3=2 m, R4=3.5 m. The results of the normalized value 

M/(N1N2) are also given in Table 3. ta and tb are the 

computation time of (8) and (34), respectively, to obtain 

the same values in the second column of Table 3 (tb is 

the computation time of (28) when r0=0). We can see 

that tb is always less than 0.1s, and for most values of r0 

in Table 3, it needs only less than 50 terms of (34) to 

converge to the results of 15 significant figures. The 

superior performance of (34) can be proved sufficiently. 

In addition, the computation time of (28) is slightly 

slower than that of (34) but it is still less than 1s. When 

r0=R3－R2=1.2 m, (8), (28) and (34) are all inefficient 

and we just give a result of 5 significant figures evaluated 

by (8): M/(N1N2)=0.26645mH, with the computation 

time of 812.172s, and a result of 7 significant figures 

evaluated by (34): M/(N1N2)=0.2664547mH, with the 

computation time of 0.452s. The convergence rate of (1) 

is still very slow and it will not be discussed further. 

 
Table 3: Performance of the mutual inductance for 

coplanar disk coils of 0≤r0≤R3－R2 evaluated with (8), 

(28) and (34) 

r0 

(m) 

M/(N1N2) 

(mH) 

ta 

(s) 

tb 

(s) 
ta /tb 

0 0.210962364718285 3.307 <0.001 >3307 

0.01 0.210965011812987 3.229 <0.001 >3229 

0.1 0.211227575213022 3.214 <0.001 >3214 

0.2 0.212029338411955 6.412 <0.001 >6412 

0.3 0.213386502485260 6.443 <0.001 >6443 

0.4 0.215332068455948 6.599 <0.001 >6599 

0.5 0.217915867666375 6.380 <0.001 >6380 

0.6 0.221209010694124 6.365 <0.001 >6365 

0.7 0.225311129537439 22.932 0.016 1433.250 

0.8 0.230362442894204 40.014 0.016 2500.875 

0.9 0.236565023271967 134.910 0.016 8431.875 

1.0 0.244224093537914 502.261 0.031 16200.516 

1.1 0.253843100876854 1505.862 0.094 16019.809 

 
C. Decoupling positions 

For the numerical validation of the existence of 

decoupling positions, we plot the curves of mutual 

inductance with respect to z0 for given values of r0 and 

vice versa, using these parameters of coils: R1=1 m, 

R2=2 m, R3=3 m, R4=4 m. The curves are shown in  

Figs. 3, 4, which illustrate the decoupling positions 

clearly. In Fig. 3, for r0=7 m, r0=8.5 and r0=10 m, the 

corresponding decoupling positions are z0=3.947 m, 

z0=5.274 m, and z0=6.408 m; in Fig. 4, for z0=4.5 m, 

z0=5.5 and z0=6.5 m, the corresponding decoupling 

positions are r0=7.639 m, r0=8.852 m, and r0=10.118 m, 

respectively. 

 

 
 

Fig. 3. The normalized mutual inductance of the disk 

coils with parallel axes, plotted with respect to z0 for 

given r0. 

 

 
 

Fig. 4. The normalized mutual inductance of the disk 

coils with parallel axes, plotted with respect to r0 for 

given z0. 

 

V. CONCLUSION 
The integral expression using Bessel and Struve 

function is extremely time-consuming for the mutual 

inductance calculations of the coplanar disk coils. The 

method using modified Bessel and Struve functions is 

introduced to improve the numerical performance of the 

integral expressions, from which the series expressions 

using the generalized hypergeometric functions have 

been obtained and these expressions can be easily 

coded in the common mathematical packages such as 

Mathematica or Matlab. The numerical calculations 

show that the series expressions are much more faster 

than the expressions of integral type to get the results 

with the same accuracy. In most cases, it only takes less 

than 1 second to obtain a result of 15 significant figures 

by using the series expressions. In addition, the 

decoupling positions of the mutual inductance in the 

case of r0≥R2+R4 are noticed and we have proved  
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formally that these positions always exist for the disk 

coils with parallel axes. 
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