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Abstract ─ In this paper, the split-step Pade scheme is 

introduced to solve the three dimensional parabolic 

equation for EM scattering problems. By implementing 

the finite differential method, the calculation can be 

taken from plane to plane along the paraxial direction 

and a sparse-matrix equation needs to be solved in  

each transverse plane. In this way, the computational 

resources can be saved significantly when compared 

with the rigorous numerical methods. Numerical results 

demonstrate that the proposed method can obtain 

accurate results at wider angles up to 45°. 

 

Index Terms ─ Electromagnetic scattering, parabolic 

equation method, split-step Pade. 
 

I. INTRODUCTION 
The parabolic equation (PE) method has been used 

as an efficient tool to analyze the EM scattering 

problems for a few decades [1-5]. The parabolic 

equation is an approximation of the wave equation and 

it is traditionally computed with first order Taylor 

expansion. By using the finite differential method (FD), 

the parabolic equation can be solved plane by plane 

along the paraxial direction. In other words, a three 

dimensional problem can be converted into a series of 

two dimensional problems to be solved by the standard 

parabolic equation (SPE) method. Therefore, less 

computational resources are needed for the SPE method 

than the rigorous numerical methods [6-8], such as the 

method of moments (MoM), the finite-difference time-

domain (FDTD), and the finite element method (FEM). 

However, the standard PE method is a narrow-angle 

approximation which can only get accurate bistatic 

RCS results at angles within 15° of the paraxial 

direction.  

Several kinds of high-order approximations have 

been introduced to the parabolic equation for wider 

angle bistatic computation [9-15]. These high-order 

approximations are based on higher order Pade  

approximations of a composition of the exponential  

or square-root functions. Both the Pade(1,1) and the 

Claerbout approximations were applied to the parabolic 

equation, which can obtain accurate results at angles 

within 25° of the paraxial direction for the analysis of 

three dimensional EM wave propagation [9]. In [10-11], 

the Pade(2,1) and Pade(2,2) approximations are accurate 

at angles even more than 40° of the paraxial direction. 

However, both the difference accuracy and the 

computation efficiency will become low with the order 

of Pade approximation increasing. Therefore, more 

efficient approximations should be developed. By  

using the split-step Pade scheme, a high order Pade 

approximation can be split as a summation of several 

lower order Pade approximations [12-15]. As a result, 

both the computational accuracy and efficiency can be 

guaranteed. The split-step Pade scheme was firstly 

introduced to solve the Helmholtz equation for 

propagation within optical fibers by Feit and Fleck [15]. 

Then more work about the split-step Pade based 

parabolic equation has been done by Collins and 

Thomson [12-14]. However, all of these works are 

focus on two-dimension scalar parabolic equation for 

EM propagating problems.  

In this paper, the split-step Pade scheme is 

introduced to the three dimensional vector parabolic 

equations for the analysis of EM scattering problems. 

Accurate bistatic RCS results can be obtained at  

wider angles up to 45° of the paraxial direction. The 

inhomogeneous boundary conditions are added on the 

surface of the scattering target in each transverse plane. 

Moreover, the perfect matching layers (PML) are used 

to truncate the computational region. The rotating PE 

method is also used to obtain the full bistatic RCS 

curves.  

The remainder of this paper is organized as follows. 

In Section 2, the theory and the formulations are given. 

Three numerical experiments are presented in Section 3 

to show the accuracy and efficiency of the proposed  
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method. Section 4 concludes this paper.  
 

II. THEORY AND FORMULATIONS 

A. Standard parabolic equation method 

Suppose that a PEC object in free space is 

illuminated by a plane wave. The scattered field 

components , ,s s s

x y zE E E  can be solved with the scalar 

wave equation: 
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where k is the wave number. 

When the paraxial direction of the parabolic 

equation is chosen as the x axis, the reduced scattered 

fields , ,
s s s

x y zu u u  can be defined as: 
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Substitute Equation (2) into Equation (1), the 

following equations are obtained: 
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After the factorization, we can get the forward 

parabolic equations: 
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where the pseudo-differential operator Q  is defined as 
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Then the solution of Equation (4) can be written as: 
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As shown in Fig. 1, the unknowns in the ( x x )th 

transverse plane can be calculated from those at x th 

transverse plane. The calculation starts before the 

scattering target and ends beyond it. Moreover, the 

perfectly matched layer (PML) is applied to truncate the 

computational domain in each transverse plane. Finally, 

the radar cross section (RCS) results are calculated with 

the reduced scattered fields in the last transverse plane 

by near-far field conversion.  
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Fig. 1. The calculation process of the PE method. 

 

B. Split-step Pade solution of parabolic equation 

We substitute a rational approximation for the 

exponential operator: 
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Suppose =2N  in Equation (6), we can rewrite the 

parabolic equation as: 
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where the coefficients are [11-12]: 
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It can be seen that the parabolic equation can be 

solved by solving 
1, ( , , )sv x x y z   and 

2, ( , , )sv x x y z   
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separately, where , , .x y z   Then the split-step based 

parabolic equations can be written as follows: 
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When the FD scheme is used Equation (10), the 

forward vector parabolic equations can be written as 

follows: 
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where 
,

m

p qu  is the reduced scattered field at the point of 

, , .m p qx m x y p y z q z       

The following coordinate transformation is 

introduced for PML domain [16]: 
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thickness of the PML and   is the wave impedance.  

Similarly, the parabolic equation in the PML  

domain can be obtained: 
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The Equation (13) can be rewritten as the 

following equation by using the FD scheme: 
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where '

ie  and '

je  are the first order partial derivative of 

ie  and 
je , respectively.  

 

C. Boundary conditions 

The above scalar parabolic equations are coupled 

through inhomogeneous boundary conditions on the 

surface of the scattering target. For the PEC objects, the 
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tangential component of the total field equals zero on 

the surface: 
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where p is a point on the surface of the scatterer and 

( , , )x y zn n n  is the outer normal to the surface at p. 

To ensure the unicity of the solution, the divergence-

free condition is added [1]: 
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D. Rotating PE method 

As shown in Fig. 2 (a), only a narrow-angle RCS 

result is obtained by a single PE run. Therefore, the 

rotating PE method [4] is introduced to obtain the full 

bistatic RCS at different frequencies for the proposed 

method. The scattering pattern of any angle can be 

calculated by decoupling the paraxial direction from the 

direction of the incidence. As shown in Fig. 2 (b), the 

paraxial direction is fixed at x-axis while both the 

incident wave and the scattering target are rotated by a 

specified angle.  
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Fig. 2. Rotating TDPE method. 

 

In our work, the scattering target is discretized with 

triangle grids. Then the cuboid grids which are needed 

by the FD scheme are obtained by taking advantage of 

the geometry information of the triangle ones. Only a 

narrow-angle RCS result is obtained by a single PE run. 

Therefore, the rotating PE method is introduced to 

obtain the full bistatic RCS result. After rotation, the 

triangle grids can be calculated directly by the 

coordinate transformation and then the cuboid grids 

should be regenerated. 

 

III. NUMERICAL RESULTS 
In this section, a series of examples are presented 

to demonstrate the accuracy and efficiency of the 

proposed method. All computations are carried out on 

Lenovo Intel Q9500 (2.83 GHz) with 8GB RAM.  

 

A. The bi-static RCS for a PEC sphere 

Firstly, the EM scattering from a PEC sphere is 

considered at the frequency of 300 MHz with the radius 

4 m. The incident angle is fixed at .90 0inc inc     

The model of the PEC sphere is shown in Fig. 3. The 

transverse ( , )y z  plane of the air box is chosen to be 

20 20 .m m  There are totally 80 transverse planes to be 

calculated with 200 200  nodes in each transverse 

plane. In this simulation, all the range steps are chosen 

to be 0.1 m. As shown in Fig. 4, the bistatic RCS curves 

of the PEC sphere are compared between the traditional 

PE method, the proposed Split-Step Pade PE method 

and Mie Series. It can be seen that there is a good 

agreement between the Mie Series and the proposed 

Split-Step Pade PE method at wider angles than the 

standard PE method (SPE).  
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Fig. 3. Model of the PEC sphere. 
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Fig. 4. Bistatic RCS result for the PEC sphere.  
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B. The monostatic RCS for a PEC cone 

Secondly, the analysis of bisttatic RCS is taken for 

a PEC cone at the frequency of 300 MHz with upper 

radius 2 m, down radius 4 m and height 4 m. As shown 

in Fig. 5, the model of the cone is given. The incident 

angle is fixed at .90 0inc inc     All the range steps 

are chosen to be 0.1 m and the transverse ( , )y z  plane 

of the air box is chosen to be 20 20 .m m  As a result, 

there are 40 transverse planes to be calculated with 

200 200  nodes in each transverse plane. As shown in 

Fig. 6, the bistatic RCS curves of the PEC sphere are 

compared between the traditional PE method, the 

proposed Split-Step Pade PE method and software 

FEKO. There is a good agreement between the FEKO 

and the proposed Split-Step Pade PE method at angles 

of 45° of the paraxial direction while 15° for the 

standard PE method (SPE).  
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Fig. 5. Model of the PEC cone.  
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Fig. 6. Bistatic RCS result for the PEC cone.  

 

C. Complete bistatic RCS for a PEC aircraft  

At last, we consider the EM scattering from an 

aircraft at the frequency of 2.5 GHz and its maximum 

size in x, y and z directions are 10 m, 2.75 m and 8.5 m. 

The incident angle is fixed at .90 0inc inc     In this 

simulation, the transverse ( , )y z  plane of the air box is 

chosen to be 12 12 .m m  There are 167 transverse planes 

to be calculated with the range steps of 0.06 m and 

200 200  nodes in each transverse plane. As shown in 

Fig. 7, the complete bistatic RCS results are compared 

between the proposed Split-Step Pade PE method and 

software FEKO. Moreover, as shown in Fig. 8, the 

detailed figure of the bistatic RCS result between 0° 

and 60° is given for better comparison. There is a good 

agreement between them. It should be noted that 4 

rotating PE runs are used to obtain the complete bistatic 

RCS for the proposed method while 7 for the standard 

PE method. Therefore, the proposed Split-Step Pade PE 

method is more efficient than the standard PE method 

for analyzing the bistatic EM scattering problems.  
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Fig. 7. Bistatic RCS result for the PEC aircraft. 
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Fig. 8. Bistatic RCS result between 0° and 60° for the 

PEC aircraft.  

 

IV. CONCLUSION 
In this paper, the split-step Pade scheme is used to 

the parabolic equation for the analysis of EM scattering 

from electrically large PEC objects. By taking 
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advantage of the split-step Pade scheme, a high order 

Pade approximation can be divided into several one-

order Pade approximations. Moreover, they can be 

calculated separately. In this way, high computational 

accuracy and efficiency can be achieved by the 

proposed method. The numerical results demonstrate 

that the proposed method can obtain accurate bistatic 

RCS results at angles even more than 45° of the 

paraxial direction.  
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