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Abstract ─ A 3-D curvilinear stochastic finite-difference 

time-domain (S-FDTD) technique on modern graphics 

processing units (GPUs) is introduced in this paper for 

complex media with high levels of statistically-variable 

heterogeneities. The novel accelerated methodology 

develops a robust covariant/contravariant dual-grid 

tessellation and estimates the mean value and standard 

deviation of field components during only a single run. 

In this way, notably accurate and stable estimations can 

be very rapidly and economically obtained, unlike the 

usual multiple-realization staircase Monte-Carlo FDTD 

schemes. These merits are successfully verified via 

realistic microwave setups with highly-varying media 

uncertainties, where the featured algorithm is shown to 

overwhelm the typical exceedingly resource consuming 

approaches. 

 

Index Terms ─ Curvilinear coordinates, graphics 

processing units (GPUs), media uncertainties, Monte-

Carlo schemes, statistical modeling, stochastic-FDTD 

method. 

 

I. INTRODUCTION 
Recently, an escalating research interest has arisen 

in the area of non-deterministic electromagnetic problems. 

Due to their abruptly-random media features, such 

applications are too complex for a conventional treatment; 

thus they are usually treated via the Monte-Carlo (MC) 

approach [1]. However, the large number of realizations 

and unduly resources actually prohibit its applicability to 

real-world 3-D (or even 2-D) arrangements. To mitigate 

these defects, several efficient alternatives have been 

proposed. Specifically, in [2] a stochastic finite-difference 

time-domain (S-FDTD) method is presented in Cartesian 

coordinates, while [3] follows a single-run approach for 

precise field statistics. Also, [4] launches an FDTD-

based polynomial chaos expansion along with the proper 

basis functions and [5] derives a stochastic finite 

integration technique for electrokinetics. Despite the 

obvious profits, though, diverse issues are to be resolved, 

like the remarkable system demands and the manipulation  

of curved structures. 

In this paper, a generalized S-FDTD method is 

developed via advanced graphics processing units (GPUs), 

for the accurate and fast analysis of electromagnetic 

problems with uncertainties in their constitutive and 

geometrical parameters. The new 3-D algorithm presents 

a covariant/contravariant metrics concept, based on a 

properly modified rendition of [6], for dual curved meshes 

to compute the mean value and standard deviation of 

electric and magnetic fields in just a single realization, 

unlike existing MC-FDTD techniques. For additional 

acceleration, the proposed method is programmed 

through the compute unified device architecture (CUDA) 

platform, which exploits the parallelized features of 

modern GPUs. Hence, very rapid and precise simulations 

are attained, whereas the detrimental lattice reflection 

errors, owing to staircase approximations, are drastically 

minimized. The prior advantages are substantiated via 

realistic microwave structures with complex curved 

parts, stochastic geometries as well as random electric 

permittivity, conductivity, and magnetic permeability. 

Numerical results reveal the accuracy and stability of  

the featured formulation, compared to the MC-FDTD 

outcomes, and its significant speedup over serialized 

implementations. 

 

II. THE CURVILINEAR S-FDTD METHOD 
The S-FDTD algorithm is derived for a general 

coordinate system, where we consider the covariant a1, 

a2, a3 and contravariant a1, a2, a3 bases for the electric, 

E, and magnetic field, H, vectors [6, 7]. This implies that 

in our formulation, there are four sets of components: (i) 

two covariant, i.e., (e1, e2, e3), (h1, h2, h3) and (ii) two 

contravariant i.e., (e1, e2, e3), (h1, h2, h3), for the E and H 

field components, respectively. In addition, for the case 

of unbounded computational domains, the convolution 

perfectly matched layer (CPML) absorbing boundary 

condition [8] is employed. Bearing in mind the above 

considerations, we apply operator  (representing the 

mean value M or variance σ2) to Maxwell equations. For 

illustration, the e1 covariant component is given by: 
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where g is the Jacobian determinant of the grs system 

metrics (for r, s = 1,2,3) and Δar the spatial step along 

the ar covariant direction. Also, DA and DB are coefficients 

that include the uncertainties of media constitutive 

parameters and ζ the covariant CPML terms. For example, 

the ζ12 component in (1) is expressed as: 
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with R and S accumulating the tunable CPML features 

[7] along the ar covariant direction. Furthermore, the 

contravariant components of (1) are calculated via a dual-

mesh metrics interpolation, which requires the covariant 

terms toward the other two directions. Indicatively, the 

h3 component is provided in (3) (bottom of page). 

Next, to consider all random media uncertainties, 

the Delta method [9], [10] is incorporated. The specific 

approach uses a Taylor series expansion on each side of 

(1) and (2). So, for a first-order approximation [2], the 

mean value and variance of a function f(y1,y2,…,yn) of 

multiple random variables y1,y2,…,yn are, respectively, 
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for my1,my2,…,myn the mean values of y1,y2,…,yn, which, 

herein, are the er, hr, er, hr components and the four 

media parameters, i.e., electric permittivity ε, magnetic 

permeability μ, conductivity   and magnetic losses  . 

As (4) implies, the mean value update equations 

share a similar form to those of the FDTD method, after 

substituting all stochastic parameters in the latter with 

their mean values. It is deduced from (6) that variance 

terms include covariance components of two random 

variables, given by 
1 21 2 , 1 2Cov{ , } { } { }y yy y y y   , for 

ρ the correlation coefficient. In fact, ρ varies between  

0 and 1, with values near unity revealing a strong 

correlation. Observing the covariances in (1)-(3), we 

may derive that ρ must be practically equal to unity. This 

is evident for field components and ζ terms, which are 

highly correlated, as they exist at very proximate time 

intervals. Thus, an instructive linear expansion of these 

terms, i.e., 2

1 2 1 2{ } ( { } { })y y y y      is extracted. 

In this paper, the standard deviation of all stochastic 

parameters does not exceed the 10% of the analogous 

mean value; a threshold which is deemed very realistic 

for our simulations. In this context, we acquire (6) for the 

standard deviation of e1 (bottom of page) and 
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with similar formulas for the other quantities. In (6) and 

(7), , , { }, { }m m       are the mean value and standard 

deviation of ε and  , while , ,
,

L L    are the cross-

correlation coefficients between component P (here 

12 13

2 3, , , )e eP h h    and material parameter. Moreover, 

(7) shows that to obtain σ, one has to evaluate the mean 

value of E and H components via (4) at the previous 

time-step. This does not permit the extraction of either 

the mean value or standard deviation alone, due to the 

coupling of (4) and (6). So, the formulation requires 

twice the usual FDTD system resources. In contrast, the 

MC-FDTD scheme focuses on the computed fields, 

whose uncertainties are found by samples over the total 

number of simulations. As a result, its overhead is 

analogous to this (usually very large) number, yet 

obligatory for a viable approximation of the ideal normal 

distribution. Finally, since the typical Courant criterion 

in Cartesian coordinates is affected by the curvilinear 

formalism, the stability throughout our paper is 

guaranteed by the generalized Courant condition [7]: 
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pertinent to handle non-uniform lattices, as the ones 

implemented herein. In (9), sup(.) denotes the maximum 

value in the entire i, j, k domain and grs is a metric that is 

the inverse of grs. Notice that all of our studies have been 

proven completely stable, even for very detailed grids or 

very long simulation times. 

 

III. OPTIMAL GPU IMPLEMENTATION  
For our curvilinear simulations, we develop the full 

3-D code based on the CUDA 6.0 platform [11]-[13] to 

exploit modern GPUs. This decision is favored from the 

parallelization potential of the S-FDTD method, which 

offers substantial acceleration. Our algorithm allows the 

fully independent execution of update equations at each 

grid node during a single time-step. Thus, we assign one 

or more such nodes to the various independent execution 

flows of the hardware, to get the maximum performance 

via a comprehensive optimization process that will be 

discussed. In CUDA independent processes called 

threads, are arranged in an algorithmic 3-D “grid”. Such 

a structure provides these threads with unique 

coordinates and allows the manipulation of the actual 

space coordinates in the domain. To this aim, we assign 

specific memory addresses from our 3-D matrix (i.e., the 

electromagnetic field space) to specific thread coordinates, 

for the entire space and connect nearby memory addresses 

with equally adjacent threads.  

Emphasis should be given to the handling of wraps, 

groupings of 32 threads that although, by their nature, 

perform 32 individual parallel executions, they are 

issuing a common command for all the involved 

execution flows at the same time. This leads to 

inefficient algorithms, where incorporation of branching 

below a 32 thread interval lead to serialization in the 

execution flow. Threads are also organized into larger 

structures called blocks that may have up to three 

dimensions in a local grid of thread coordinates. All 

wraps that reside inside each block are assigned to the 

same streaming multiprocessor (SM) in the hardware; so 

making use of the same local memories (shared memory, 

L1 cache, etc.) and the same schedulers. Lastly, the 

concept of “kernel”, a CUDA function executed on the 

GPU, must be considered. Through kernels we can create 

our grid and block structure, control the hardware, and 

use the different local memories available per block. A 

flow chart of our algorithm is given in Fig. 1, while its 

key realization features are summarized as follows. 

 

 
 

Fig. 1. Flow chart for the GPU realization of the MC-

FDTD and the proposed curvilinear S-FDTD method. 

 

A. Kernel size and register usage  

According to our analysis, a grouping of 32×16 

threads-per-block has been found to guarantee very good 

performance in Cartesian grids. The complexity of the 

curvilinear S-FDTD algorithm did, however, require 

extensive treatment of kernel variables, yielding an 

optimal 24×16 grid. Although in the simple case of fully 

orthogonal meshes, the use of one kernel for each of the 

FDTD updates suffices, we observed that a multi-kernel 

implementation (exploiting streams as discussed later) is 

more beneficial for the curvilinear S-FDTD algorithm. 

Regarding the surrounding CPML layers, four different 

kernels for each side (two for electric and two for 

magnetic components), running simultaneously via 

streams, are necessary for the additional calculations 

(due to the extra CPML terms) to be completed.  
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B. Use of streams 

Aiming at the highest parallelization, we resort – at 

various points – to the use of streams. They refer to 

independent flow sequences, defined outside a kernel 

and passed as an argument when the latter is called. Also, 

they allow kernels, likely not to interfere or share cross-

dependences, to be executed concurrently; something 

impossible in their default state, so avoiding unnecessary 

serializations. Thanks to them, we can partially achieve 

the simultaneous execution of the main routine and the 

CPML kernels, resulting in about 72% less overall 

computational time, as illustrated in Fig. 2.  

 

 
 

Fig. 2. Efficiency differences between single- and 

multiple-kernel realizations for the CPML update. 

 

C. Memory considerations 

In our realization, the global memory is used for the 

storage of the main components and the CPML variables. 

Special attention has been paid to the suitable matrix 

alignment in memory, which ensures that adjacent 

threads in the kernels access similarly-placed elements. 

Only when this occurs, transfers of 32 elements from 

global memory (in the case of floats) are conducted in a 

single memory access cycle (i.e., “coalesced access”). 

For the CPML, specific grid alignments are selected, 

because a simplistic implementation of a unique kernel 

for all CPML areas would render coalesced access 

unfeasible. This is due to the use of a small grid along 

the perpendicular (with respect to the CPML) directions, 

which does not allow the assign of the first grid 

dimension to the first dimension of CPML auxiliary field 

matrices. However, the latter action is required for 

memory coalescing. A simple, yet inefficient, solution 

could use a full size grid, which would introduce large 

numbers of idle threads. So, the division of the algorithm 

into individual parts with different grids, that exploit 

streams, appears as the optimal choice. 

 

D. Use of atomics 

Atomics are necessary for the simultaneous update 

of elements at the grid corners. Figure 3 clarifies the 

correction provided in our algorithm by this idea, when 

the race between concurrent threads is likely to produce 

undesirable miscalculations (the case of top/bottom 

CPMLs is shown in Fig. 3). So, correct updating is 

ensured without causing any performance degradation. 

 
 

Fig. 3. Illustration of the error that can arise during 

parallel CPML updates and its mitigation via atomics (xy 

and xz refer to terms at the CPML corner regions). 

 

IV. NUMERICAL RESULTS 
The performance of the proposed algorithm is 

validated in terms of complicated microwave structures 

with real-world stochastic media parameters. Such 

uncertainties are normally encountered at their substrate, 

copper parts and geometry, possibly created during the 

manufacturing process. Furthermore, comparisons are 

conducted with an MC-FDTD scheme, which needs the 

large number of almost 104 FDTD realizations, whereas 

all infinite domains are terminated by an 8-cell CPML. 

 

A. Koch-shaped fractal microstrip  

Let us study the Koch fractal microstrip filter of Fig. 

4, which suppresses particular frequencies with a 

reduced size. Its dimensions are given in [14] and all 

statistical constitutive/geometric parameters of its copper 

parts and substrate are obtained from the VentecTM and 

IsolaTM Corporation datasheets. Therefore, for the 

substrate: mε = 4.4, σ{ε} = 0.088, 3.427m  mS/m, 

{ } 0.07   mS/m, while for its height h: mh = 15 mm 

and σ{h} = 0.3 mm. On the other hand, for the copper 

parts, we have 58.6m   S/m and { } 0.17  S/m. 

Figures 5 and 6 present the Ex mean value and standard 

deviation, as derived from the MC-FDTD technique 

(mesh: 203407117 cells and total CPU computational 

time: 62.57 hours) and our algorithm (mesh: 10120151 

cells and total CPU computational time: 22.92 min). 

Note that all calculations are performed across a straight 

horizontal line at the center of filter’s top side. As 

discerned, the agreement between the two methods is 

promising, whereas the convergence of the standard 

deviation outcomes (Fig. 6) is very satisfactory. However, 

it is stated that as ρ→1, the S-FDTD technique tends to 

overestimate the solution, as also discussed in [2], [3]. 

Furthermore, in the inlet snapshot of Fig. 5, we illustrate 

the mean value of the current distribution atop the filter, 

while Fig. 7 summarizes the significant GPU acceleration 

of our algorithm for various lattices via two NVIDIATM 

models. Similar deductions can be drawn for the S-

parameters of Fig. 8. 
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Fig. 4. A second-order Koch-shaped microstrip filter. 

 

 
 

Fig. 5. Mean value of the Ex component for the Koch-

shaped fractal filter at 2 GHz (inlet snapshot gives the 

mean value of the current distribution at the top side).  

 

 
 

Fig. 6. Standard deviation of the Ex component for the 

Koch-shaped fractal filter at 2 GHz. 

 

 
 

Fig. 7. GPU acceleration of the proposed method. 

 
 

Fig. 8. Mean value and standard deviation of the S-

parameters for the Koch-shaped fractal filter.  

 

B. Compact wideband resonator filter  

The second application is the compact wideband 

filter of Fig. 9, with a folded multiple-mode resonator 

[15]. For the same stochastic constitutive/geometric 

parameters as in the previous problem, the basic 

dimensions are selected as: L1 = 18.8 mm, L2 = 5.8 mm, 

L3 = 9 mm, L4 = 5 mm, w1 = 2.27 mm, w2 = 5.5 mm,  

w3 = 0.4 mm, g1 = 1 mm, g2 = 0.4 mm, g3 = 0.21 mm, 

and H = 4 mm. This realistic setup (mesh: 27310749 

cells and total CPU computational time: 36.27 min) leads 

to the single-run current distribution mean value of Fig. 

10, at the filter’s top side, which is very smooth, unlike 

the one of the MC-FDTD method (mesh: 511263105 

cells and total CPU computational time: 71.34 hours) 

through an extremely large number of multiple realizations. 

Finally, the accuracy of our algorithm are successfully 

substantiated through the S-parameters of Fig. 11, again 

evaluated during only a single realization. 

 

 
 

Fig. 9. Top-view of the compact wideband filter with a 

folded multi-mode resonator.  

 

 
 

Fig. 10. Snapshot of the current distribution mean value 

at the top side of the compact wideband filter. 
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Fig. 11. Mean value and standard deviation of the S-

parameters for the compact wideband filter.  

 

V. CONCLUSION 
A 3-D curvilinear S-FDTD method has been 

presented in this paper for statistically heterogeneous 

materials regarding their constitutive/geometric parameters. 

The new scheme launches a covariant/contravariant 

concept, while its single-run GPU rendition is more than 

100× faster than existing techniques. So, accurate outcomes 

can be very rapidly and cost-effectively derived.  
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