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Abstract ─ In this paper, we consider the projection of 

the late time response of an unknown radar target onto 

the column space and the left null space of the matrix 

whose entries are from the natural frequencies of the 

specific radar target. We get explicit expressions for the 

projection onto the column space, the projection onto the 

left null space, the square of projection onto the column 

space and the square of the projection onto the left null 

space. Also, we note that the norm of the defined 

projection onto the column space and the norm of the 

defined projection onto the left null space are Ricean 

distributed, and that the square of the norm of the 

projection onto the column space and the square of the 

norm of the projection onto the left null space are  

chi-square distributed. Accordingly, we give analytic 

expressions of the mean and the variance of the Ricean 

distribution and those of the chi-square distribution. 
 

Index Terms ─ Chi-square distribution, late time 

response, projection onto the column space, projection 

onto the left null space, radar target recognition, Ricean 

distribution. 
 

I. INTRODUCTION 
There has been much research on the radar target 

recognition based on the natural frequencies [1-4]. In [3], 

the authors show the explicit expression for the mean and 

the variance of the square of the norm of the projection 

onto the left null space. 

In this paper, we present explicit expressions for the 

defined projection onto the column space, projection 

onto the left null space, the square of the projection onto 

the column space and the square of the projection onto 

the left null space. In addition, we also present the 

analytic expressions for the mean and the variance of the 

norm of the defined projection onto the column space 

and the projection onto the left null space and those of 

the square of the norm of the projection onto the column 

space and the square of the norm of the projection onto 

the left null space. 

The difference between this paper and [3] are the 

following. In [3], we only considered the square of the 

norm of the projection onto the left null space. In this 

paper, we considered the square of the norm of the 

projection onto the column space, the norm of the 

projection onto the column space and the norm of the 

projection onto the left null space as well as the square 

of the norm of the projection onto the left null space. In 

addition, in deriving the explicit expression of the 

projection, there is some difference in applying the 

Cramer’s rule between [3] and this paper. 
 

II. THE PROJECTION ONTO THE 

COLUMN SPACE AND THE PROJECTION 

ONTO THE LEFT NULL SPACE 
It can be easily shown that, from the late time 

representation based on the natural frequencies, the late 

time response can be written as [3], 1, , ,n N : 

 

1

,
M

n

n i i n

i

y c z h


   (1) 

where N is the number of the sampled late time response 

and M is the number of the natural frequencies. 

, 1, , ,nh n N  is the zero-mean Gaussian noise 

associated with , 1, , .ny n N  , 1, , ,iz i M  is the z-

plane natural frequencies of the target. In the noiseless 

case where , 1, , ,nh n N  is equal to zero, (1) reduces 

to: 

 

1

,
M

n

n i i

i

u c z


  (2) 

where , 1, , ,nu n N  is the noiseless late time response. 

In matrix form, (1) can be written as: 

 ,y Zc  (3) 

where ,Z y  and c  are defined as: 
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 ,m

mn nZ z  (4) 

  1 2 ,
T

Ny y yy  (5) 

  1 2 .
T

Mc c cc  (6) 

Since N is larger than M, the least squares solution 

of (3) can be written as 

  
1

ˆ .H H


c Z Z Z y  (7) 

Using (7) in the right-hand side of (3), we have, 

  
1

ˆ .H H


Zc Z Z Z Z y  (8) 

We note that the projection onto the column space 

matrix onto the column space of the matrix Z is defined as: 

  
1

.H H

Z



P Z Z Z Z  (9) 

Using (9) in (8) enables us to write (8) as: 

  
1

ˆ .H H


 
Z

Zc Z Z Z Z y P y  (10) 

The projection onto the left null space can be 

defined by subtracting the projection onto the column 

space of y  onto the column space of Z  from the noisy 

late time response y : 

  ˆ ,   
Z Z

y Zc I P y P y  (11) 

where (9) is used and   
Z Z

P I P  is called the projector 

onto the left null space of .Z  

 

III. EXPLICIT EXPRESSIONS FOR THE 

PROJECTION ONTO THE COLUMN SPACE 

AND THE PROJECTION ONTO THE LEFT 

NULL SPACE 

From (4), the m-th row and the n-th column of H
Z Z  

can be written as: 

    *

1

1, , 1, , .
N

i
H

m nmn
i

z z m M n M


  Z Z  (12) 

If we use the cofactor expansion along the n-th 

column of the matrix ,H
Z Z  we have, 

    *

,

1 1

det 1 det ,
M N

i m nH

m n m n

m i

z z


 

 
  

 
 Z Z L  (13) 

where 
,m nL  is the    1 1M M    matrix formed by 

removing from H
Z Z  its m-th row and n-th column. 

From (1) and (4), H
Z y  can be written as: 

 
1 2

1 1 1

.

T
N N N

H i i i

i i M i

i i i

z y z y z y  

  

 
  
 
  Z y  (14) 

nB  is defined by replacing the n-th column of the matrix 

H
Z Z  by H

Z y  for 1, ,n M : 

         
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    

B

 (15) 

The determinant of matrix nB  can be obtained from 

the cofactor expansion along the first column of the 

matrix nB : 

     ,

1 1

det 1 det .
M N

i m n

n m i m n

m i

z y


 

  
   

  
 B L  (16) 

Using the Cramer’s rule, the explicit expression of 

the least squares solution in (7) is: 

 det
ˆ 1, , .

det

n
n H

c n M 
B

Z Z
 (17) 

Note that, in [3], the authors applied the Cramer’s 

rule to obtain  
1

,H H


Z Z Z  not to obtain  
1

.H H


Z Z Z y  

In this paper, the Cramer’s rule is used to obtain 

 
1

.H H


Z Z Z y  What is desirable in this new approach is 

that we can get expressions which are more compact, 

intuitive and insightful than those given in [3]. 

By substituting (13) and (16) in (17), we get 
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*
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
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 
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 

 

L
B

Z Z
L

 (18) 

Using (18) in (10), we have, 

 

   

   

   
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*

*
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M N i
m n
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n M N
i m nn

m n m n

m i

M N i
m n

m i m nM
m iN

n M N
i m nn

m n m n

m i

z y

z

z z

z y

z

z z



 



 



 



 
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  
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 
 

   
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   
  

  
  

 


 

 


 

L

L
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 (19) 

The implicit expression of the norm of the 

projection onto the column space is, 

  
1

.H H


ZP y Z Z Z Z y  (20) 

From (19) and (20), the corresponding explicit 

expression of the norm of the projection onto the column 

space is, 

   

   

*

2
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m ij

n M N
i m nj n

m n m n

m i

z y
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 
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  

     

 
 

 
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L

P y

L

 

 (21) 

Similarly, the implicit expression of the square of 

the norm of the projection onto the column space is, 

  
2

2 1

.H H



Z

P y Z Z Z Z y  (22) 

From (19) and (22), the explicit expression of the  
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square of the norm of the projection onto the column 

space is, 

   

   

*

2

,
2 1 1

1 1 *

,

1 1

1 det

.

1 det

M N i
m n

m i m nN M
m ij

n M N
i m nj n

m n m n

m i

z y

z

z z



 
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 

   
   

   
  

     

 
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 
Z

L

P y

L

 (23) 

Using the same approach to get (21) and (23), the 

explicit expressions of 

ZP y  and 
2



Z
P y  can be written 

as: 

    

   

*

2

,

1 1

1 1 *

,
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M N i
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 

   
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  
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 (24) 
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  
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 
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L

y Zc

L

 (25) 

which is supposed to be Ricean-distributed and chi-

square distributed, respectively [5]. 

 

IV. ANALYTIC EXPRESSIONS FOR THE 

MEAN AND THE VARIANCE 

A. Analytic expressions for the statistics of the 

projection onto the column space 

A sum of the squares of independent Gaussian 

random variables is chi-square distributed, and the degree 

of freedom of the chi-square random variable is the 

number Gaussian random variables. In 
2 2

1

,
M

i

i

w


Z
P y  

2

ZP y  is expressed as a sum of square of M Gaussian 

random variables, which implies that 
2

ZP y  is chi-

square distributed with the degree of freedom M. 

In [3], the mean and the variance of 
2



Z
P y  have 

been derived. Adopting the scheme presented in [3], the 

mean and variance of 
2

Z
P y  are expressed as: 

 
2

-1
2 2 2

1 1

Mean Mean ,
i

M M
H H

i w

i i

w M 
 

  
    

   
 Z Z Z Z y

 (26) 

  
2

-1
2 4 2 2

1 1

Var Var 2 4 ,
i

M M
H H

i w

i i

w M  
 

  
    

   
 Z Z Z Z y

 (27) 

where 
iw  is the i-th entry of T

w = V y  and 
iw  is the 

expected value of .iw  Note that V is defined from 

.T
Z

P VΛV  

The norm of the projection onto the column space is 

equal to: 

 2

1

.
M

i

i

w


 Z
P y  (28) 

Since 
2 2

1

M

i

i

w


Z
P y  is chi-square distributed, it follows 

that 2

1

M

i

i

w


 Z
P y  is Ricean distributed [5]. 

From the moment of Ricean distribution, we can 

obtain the mean and the variance of (28) [5]: 

 
 

2 2

1 1
1 12 2

1
1

1 12
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
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Z
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where   -1

Mean H H
Z Z Z Z y  is given in (29), and 

 is the gamma function.  1 1 , ,F    is the hypergeometric 

function. 
 

B. Analytic expressions for the statistics of the 

projection onto the left null space 

In 
2

2

1

N M

i

i

w





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P y , 

2


ZP y  is expressed as a sum 

of square of N-M Gaussian random variables, which 

implies that 
2



ZP y  is chi-square distributed with the 

degree of freedom N-M. 

It is shown in [3] that the mean and the variance of 
2



Z
P y are expressed as: 

    
2

-1
2 2 2

1 1

Mean Mean ,
i

N M N M
H H

i w

i i

w N M  
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where 
iw is the i-th entry of T

w = V y  and 
iw  is the 

expected value of .iw  Note that V is defined from 

.T 
Z

P VΛV  

The norm of the projection onto the left null space 

can be written as: 

 2

1

.
N M

i

i

w





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P y  (33) 

Comparing (28) and (33), we can see that  
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P y  is also Ricean distributed with M in (28) 

replaced by N M  in (33) and the corresponding mean 

and the variance can be written as [5]: 
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V. NUMERICAL RESULTS 
For the square of the norm of the projection onto  

the column space, we validate (23), (26) and (27) by 

evaluating (23) and (22) using the Monte Carlo 

simulation, and calculate the mean of (23) and the mean 

of (22) to see whether they are equal to (26). Also, we 

evaluate the variance of (23) and the variance of (22) to 

see whether they are consistent with (27). 

For the square of the norm of the projection onto the 

left null space, to show that (25), (31) and (32) are all 

valid we make the Monte Carlo simulation for (25) and 

check whether the mean of (25) is equal to (31). Also, 

we check whether the variance of (25) is equal to (32). 

For the norm of the projection onto the column 

space, we validate (21), (29) and (30) by evaluating (21) 

and (20) using the Monte Carlo simulation, and calculate 

the mean of (21) and the mean of (20) for checking 

whether they are all equal to (29). Also, we calculate the 

variance of (21) and the variance of (20) to see whether 

they are all equal to (30). 

For the norm of the projection onto the left null 

space, to show that (24), (34) and (35) are all correct, we 

evaluate (24) via the Monte Carlo simulation and check 

whether the mean of (24) is equal to (34). Also, we check 

whether the variance of (24) is consistent with (35). 

The lengths of the thin wires used for the numerical 

simulation are equal to 1.0 meter, 0.9 meter and 0.8 meter. 

In evaluating 
ZP y , 

ZP y ,
2

Z
P y  and 

2


Z
P y ,  

Z  in (4) corresponds to 1.0 meter long wire, and 

 1 2

T

Ny y yy  can be the late time response of 

0.8 meter, 0.9 meter or 1.0 meter. Scattering data are 

generated using the singularity expansion method (SEM) 

representation for the thin wires of 1.0 meter, 0.9 meter 

and 0.8 meter with incidence angle of 40 degrees. That 

is, the correct target is the thin wire of 1.0 m,L   and the 

wrong targets are the thin wires of 0.9 mL   and 

0.8 m.L   The radii of all the wires are equal to 200.L  

For noise simulation, each point of the SEM-based 

wire transient response is perturbed with Gaussian noise. 

We consider the various signal-to-noise ratios (SNRs)  

of SNR = 0, 5 and 10 dB. The details on how to make 

numerical simulations can be found in [3]. We use the 

late time transient responses of thin wires of 0.8 meter, 

0.9 meter and 1.0 meter and the z-plane natural 

frequencies of the correct target of 1.0 m. The z-plane 

natural frequencies for the thin wire of 1.0 meter, 

, 1, ,6,iz i  are 0.9617 1.5464,0.9445 2.4621j j  and 

0.9321 3.8925j  [3]. 

In Fig. 1, the line with legend ‘Analytic’ are from 

(26). The lines with legends ‘Simulation: Implicit’ and 

‘Simulation: Explicit’ are given from the averages of the 

Monte Carlo simulation of (22) and (23). The line with 

legend ‘Analytic’ are from (26), and those with legends 

‘Simulation: Implicit’ and ‘Simulation: Explicit’ are given 

from the variances of (22) and (23) via the Monte Carlo 

simulation in Fig. 2.  
 

 
 

Fig. 1. Average of square of norm of projection onto the 

column space ( 6, 40M N  ). 
 

 
 

Fig. 2. Variance of square of norm of projection onto the 

column space ( 6, 40M N  ). 
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In Fig. 3, the result with legend ‘Analytic’ are from 

(31), and those with legends ‘Simulation: Implicit’ and 

‘Simulation: Explicit’ are given from the averages of the 

Monte Carlo simulation of (25). In Fig. 4, the line with 

legend ‘Analytic’ are given by (32), and those with 

legends ‘Simulation: Implicit’ and ‘Simulation: Explicit’ 

are given from the variances of the Monte Carlo 

simulation of (25). 

 

 
 

Fig. 3. Average of square of norm of projection onto the 

left null space ( 6, 40M N  ). 
 

 
 

Fig. 4. Variance of square of norm of projection onto the 

left null space ( 6, 40M N  ). 
 

In Fig. 5, the line with legend ‘Analytic’ are from 

(29), and those with legends ‘Simulation: Implicit’ and 

‘Simulation: Explicit’ are given from the averages of the 

Monte Carlo simulation corresponding to (20) and (21). 

In Fig. 6, the line with legend ‘Analytic’ are from (30), 

and those with legends ‘Simulation: Implicit’ and 

‘Simulation: Explicit’ are given from the variances of the 

Monte Carlo simulation of (20) and (21). 

In Fig. 7, the line with legend ‘Analytic’ are from 

(34), and those with legends ‘Simulation: Implicit’ and 

‘Simulation: Explicit’ are given from the averages of the 

Monte Carlo simulation of (24). The result with legend  

‘Analytic’ are from (35), and those with legends 

‘Simulation: Implicit’ and ‘Simulation: Explicit’ are 

calculated from the variances of the Monte Carlo 

simulation of (24) in Fig. 8. 

 

 
 

Fig. 5. Average of norm of projection onto the column 

space ( 6, 40M N  ). 
 

 
 

Fig. 6. Variance of norm of projection onto the column 

space ( 6, 40M N  ). 
 

 
 

Fig. 7. Average of norm of projection onto the left null 

space ( 6, 40M N  ). 
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Fig. 8. Variance of norm of projection onto the left null 

space ( 6, 40M N  ). 
 

In Fig. 5, we can observe the following: 

• In Fig. 5, the norm of the projection onto the column 

space of the correct target of 1.0 m is small enough to 

recognize the correct target compared with that for the 

wrong targets of 0.9 m and 0.8 m.  

• As SNR increases, the norm of the projection onto  

the column space of the correct target decreases 

significantly, which is favorable for the recognition of 

the correct target. 

• As the number of natural frequencies increases, the 

norm of the projection onto the column space of the 

correct target increases and those for the wrong target 

decrease, which improves the performance of the radar 

target recognition with an increase of the number of 

the natural frequencies. Since the results in Fig. 1 are 

for the square of the norm of the projection onto the 

column space of Z  of the late time response and those 

in Fig. 5 are the norm of the projection onto the column 

space of Z  of the late time response, the observation 

for Fig. 5 is also true for Fig. 1. 

In Fig. 7, we can see the following: 

• The norm of the projection onto the left null space of 

the matrix Z  corresponding to the correct target of 

length 1.0 meter is large enough to recognize the 

correct target compared with that for the wrong targets 

of length 0.9 meter and 0.8 meter. 

• As SNR increases, the norm of the projection onto the 

left null space for the correct target decreases 

significantly, which is favorable for the recognition of 

the correct target. 

• As the number of natural frequencies increases, the 

norm of the projection onto the left null space for the 

correct target decrease and those for the wrong target 

increase, which improves the performance of the radar 

target recognition with an increase of the number of 

the natural frequencies. Since the results in Fig. 3 are 

for the square of the norm of the projection onto the 

left null space of Z  of the late time response and those 

in Fig. 7 are the norm of the projection onto the  

left null space of Z  of the late time response, the 

observation for Fig. 7 is also true for Fig. 3. 
 

VI. CONCLUSION 
The mean and the variance of the square of the norm 

of the projection onto the column space are given in (26) 

and (27), respectively, and those of the square of the 

norm of the projection onto the left null space are given 

in (31) and (32), respectively.  

The mean and the variance of the norm of the 

projection onto the column space are given in (29) and 

(30), respectively, and those of the square of the norm of 

the projection onto the left null space are given in (34) 

and (35), respectively.  

(23), (26) and (27) are verified in Figs. 1-2, and (25), 

(31) and (32) are verified in Figs. 3-4. In Figs. 5-6, the 

validity of (21), (29) and (30) is shown. Figures 7-8 show 

the validity of (24), (34) and (35). 

From the numerical results, for the square of the 

norm of the projection onto the column space, it has been 

confirmed that the mean and the variance of the norm of 

the projection onto the column space can be available 

from the derived expressions in (26) and (27) without 

actually performing the Monte Carlo simulations which 

require many evaluations of (22) or (23). In addition to 

the square of the norm of the projection onto the column 

space, it is also true for the norm of the projection onto 

the column space, the square of the norm of the 

projection onto the left null space, and the norm of the 

projection onto the left null space.  
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