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Abstract ─ A novel wideband bandpass filter (BPF) 

based on multi-layered coupling using low temperature 

co-fired ceramic (LTCC) technology is proposed. Four 

folded quarter-wavelength layered coupled lines are 

distributed in 3D space to achieve compact circuit 

structure. Two transmission zeros near edges of the 

passband response can be easily realized by the two 

quarter-wavelength open/short coupled lines. Besides 

over 15-dB out-of-band rejection, the insertion loss of 

less than 0.7 dB is realized in the passband. A prototype 

with 3-dB fractional bandwidth of 25.7% operated at 

2.95 GHz is designed and fabricated.  

 

Index Terms ─ Bandpass filter, LTCC, multi-layered 

coupling, open/short coupled lines, wideband. 

 

I. INTRODUCTION 
With the rapid development of wireless 

communication system, low temperature co-fired 

ceramic (LTCC) technology has been widely used in 

many microwave devices, due to its characteristics of 

low dielectric loss, high frequency, high Q value, 

multilayer layout and high integration. As vital passive 

components, more and more researches have been 

focused on bandpass filters (BPFs) with LTCC 

technology. At the early stage, LTCC BPFs based on 

lumped elements are popular and easy- implemented [1]-

[3]. In [1], a capacitor connected between the input and 

output is utilized to create a feedback path to introduce 

two finite zeros near the passband. A compact BPF using 

negative coupling structure has been proposed; however, 

the selectivity of the passband is not so good due to 

lacking of transmission zeros at the upper stopband [2]. 

In addition, a wideband BPF with multiple transmission 

zeros are fabricated by cascading a high- and low-pass 

filter [3]. In order to improve the flexibility of the 

implement, semilumped elements are introduced in some 

LTCC BPFs [4]-[5]. Recently, several LTCC BPFs based 

on distributed elements were presented [6]-[7]. In [6], a 

compact LTCC BPF with wide stopband is proposed 

using discriminating coupling scheme, but the passband 

is not wide. Moreover, a LTCC wideband BPF based on 

the dual-mode stepped-impedance resonator was designed 

and fabricated [7]. 

In this letter, a novel LTCC wideband BPF based on 

multi-layered coupling is presented. The filter is 

completely constructed by distributed elements, which 

include two quarter-wavelength open/short coupled lines 

and two quarter-wavelength open coupled lines. The  

two transmission zeros near the passband can be 

independently controlled by the coupling value of two 

quarter-wavelength open/short coupled lines. The 

compact size can be easily realized by the folded 

transmission lines and multilayer technology. Due to the 

symmetry of the circuit, even/odd-mode method can be 

applied to analyze the characteristic of the filter. 

 

II. DESIGN OF PROPOSED LTCC 

WIDEBAND BANDPASS FILTER 

A. Analysis of planar structure of the filter 

As shown in Fig. 1 (a), two quarter-wavelength open 

coupled lines (Ze1, Zo1, θ) are located between port 1 and 

2, and two quarter-wavelength open/short coupled lines 

(Ze2, Zo2, θ) are shunted connected in the two ports as 

well as characteristic impedance Z0 = 50 Ω. The planar 

circuit is symmetric along the plane AA′, when the 

even/odd-mode are excited, a virtual open/short appears 

along AA′, and the even/odd-mode input admittances 

Yeven and Yodd of the equivalent circuits in Figs. 1 (b) and 

(c) can be illustrated as: 
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And the S-parameters of the filter can be expressed 

as:  
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where Y0 = 1/Z0, when S21 = 0, the two transmission zeros 

of the circuit in Fig. 1 (a) can be obtained as: 
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Consequently, the locations of the transmission 

zeros are only determined by the coupling coefficient k2 

(k2 = (Ze2-Zo2)/(Ze2+Zo2)). 

Figure 2 (a) shows the even/odd-mode input 

admittances versus θ, and Fig. 2 (b) shows |S21| versus 

the normalized frequency f/f0. The bandwidth of the 

bandpass filter is mainly determined by the two even-

modes (fe1, fe2). As shown in Fig. 2 (c), the in-band return 

loss improves as k1 (k1 = (Ze1-Zo1)/(Ze1+Zo1)) increases, 

but the out-of-band rejection level improves as k1 

decreases. Moreover, the 3-dB bandwidth and locations 

of transmission zeros have no changes as k1 varies. It 

should be pointed that k2 can be seen as independent 

parameters for adjusting the locations of two 

transmission zeros (ftz1, ftz2) as shown in Fig. 2 (d). When 

k2 increases, the 3-dB bandwidth increases and ftz1, ftz2 

move far away from each other. The above transmission 

characteristic reduces the design complexity of the filter 

effectively. 

 

 
 (a) 

 
 (b)  (c) 

 
Fig. 1. The planar circuit diagram of proposed wideband 

BPF. (a) Ideal circuit of the filter, (b) even-mode 

equivalent circuit, and (c) odd-mode equivalent circuit. 

 

 
  (a) 

 
  (b) 

 
  (c) 

 
  (d) 
 
Fig. 2. Simulated frequency responses of Fig. 1. (a) 
Even/odd-mode resonant frequencies versus θ, (b) 
analysis of resonator frequencies under weak coupling, 
Ze1 = Ze2 = 190 Ω, Zo1 = Zo2 = 70 Ω, (c) |S21|&|S11| of Fig. 
1 (a) versus k1, Ze2 = 190 Ω, Zo2 = 70 Ω, and (d) ftz1, ftz2 

and 3-dB bandwidth versus k2, Ze1 = 90 Ω, Zo1 = 70 Ω. 
 
B. Constructions of LTCC 3D model of the filter 

In order to obtain the compact size of the filter, the 

planar circuit can be converted into the LTCC 3D 

structure. As shown in Fig. 3 (a), the proposed filter is 

fabricated on a 14-layer LTCC substrate with the 

dielectric constant of 5.9 and loss tangent of 0.002. And 

the dielectric thickness of each layer is 0.1 mm. As we  
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can see, the planar edge-coupled structures have been 

improved to multi-layered coupled structures. In 

addition, the folded coupled lines can decrease its size 

efficiently. Figure 3 (b) shows the filter is composed of 

five metal layers. On the layer 1 are the G-S-G ports, and 

the rectangular metal sheets on the layer 2 linked 

between the ground and ports can be used to match the 

port impedance. The coupled quarter-wavelength 

resonators are on the layer 7 and 11, so the coupling gap 

(h1) between coupled lines is 0.4 mm. It should be 

pointed that, the coupling gap of open/short coupled 

lines is h1-s, and the coupling gap of open coupled lines 

is h1-o. The ground plane is on the layer 15, and h2 is also 

0.4 mm. All the interconnection and grounding are 

realized by via-holes. The layout of each layer is shown 

in Figs. 3 (c)-(e), the parameters are determined as 

follows: w1 = 0.37 mm, w2 = 0.13 mm, w3 = 0.5 mm,  

w4 = 0.15 mm, w5 = 0.3 mm, l1 = 2 mm, l2 = 12.3 mm,  

l3 = 10.4 mm, l4 = 21 mm, l5 = 11.3 mm, l6 = 7.2 mm,  

l7 = 8.55 mm, s1 = 0.8 mm. When h1-s increases, the two 

transmission zeros move towards each other and the 

bandwidth of the filter decreases as shown in Fig. 4 (a). 

As we know, the coupling coefficient k2 decreases as  

h1-s increases, so the simulated results in Fig. 4 (a) are 

corresponding to the Equation (4). By contrast, Fig. 4 (b) 

shows the locations of the transmission zeros and 

bandwidth nearly have no changes when h1-o varies. 
 

 
 (a) 

 
 (b) 

    
 (c) 

   
 (d) 

 
 (e) 

 

Fig. 3. Proposed LTCC wideband BPF configuration. (a) 

3D structure, (b) side view, (c) layer 1 and layer 2, (d) 

layer 7 and layer 11, and (e) layer 15. 

 

 
 (a) 

 
 (b) 

 

Fig. 4. Simulated frequency responses |S21| of the LTCC 

wideband BPF. (a) Versus h1-s, h1-o = 0.4 mm, h2 = 0.4 mm, 

and (b) versus h1-o, h1-s = 0.4 mm, h2 = 0.4 mm. 

 

III. EXPERIMENT AND RESULTS 
The measured and simulated results of the LTCC 

wideband BPF are illustrated in Fig. 5, which show good 

agreement. The measured centre frequency of the filter 

is 2.95 GHz with the 3-dB fractional bandwidth of 

25.7%. The in-band return loss is greater than 20 dB, and 

the minimum insertion loss is only 0.7 dB. Over 15-dB 

out-of-band suppression can be realized by the two 

transmission zeros near the passband which are located 

at 2.32 and 3.88 GHz. In addition, the upper stopband 
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rejection is achieved from 3.52 to 7 GHz (2.37f0). The 

photograph of the filter is also shown in Fig. 5, and its 

overall size is only 8.55mm×7.2mm×1.4mm. 

 

 
 

Fig. 5. Photograph, measured, simulated results of the 

LTCC wideband BPF. 

 

IV. CONCLUSIONS 
A novel LTCC wideband BPF based on multi-

layered coupling is presented in this letter. The coupling 

amount of the quarter-wavelength resonators can be 

easily adjusted by the vertical spacing of the coupled 

lines. In addition, the two transmission zeros near the 

passband can be independently controlled by the quarter-

wavelength open/short coupled lines, which reduces the 

complexity of the design obviously. Moreover, the 

advantages of compact size, good passband selectivity 

and wide out-of-band suppression of the proposed filter 

make it competitive for many wireless communication 

systems.  
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