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Abstract ─ We present a MATLAB based finite difference 

time domain (FDTD) method accelerated using the GPU 

functions in MATLAB’s parallel computing toolbox 

(PCT). Procedures to achieve significant speedups over 

a CPU implementation of the same code are outlined. 

The use of specialized code with NVIDIA's compute 

unified device architecture (CUDA) programming results 

in impressive computational speedups. However, this 

requires specialized programming knowledge to 

efficiently implement. The MATLAB PCT can be 

applied directly to pre-existing MATLAB FDTD code 

and obtain reasonable speedups over equivalent CPU 

code. We demonstrate several modifications to increase 

the efficiency on several different NVIDIA graphics 

cards. Benchmarks are presented on problems of practical 

size (millions of cells) with a CPML terminated domain. 

 

Index Terms ─ FDTD, GPU, MATLAB. 
 

I. INTRODUCTION 
For problems of practical size using FDTD method, 

domains on the order of tens of millions of cells  

with large number of time stepping need to be solved. 

This leads to correspondingly long computation times. 

Significant speedups in the computation time of FDTD 

solvers are possible by shifting the computation from the 

CPU to a GPU. While the most efficient solvers employ 

code specifically written to run on a GPU, often using 

CUDA kernels [1, 3-4, 6], this requires specialized 

programming and is non-trivial to implement. MATLAB 

is an easy to use high-level programming language 

available at many universities, currently available for 

many students and practicing engineers. Efficient 

implementations of FDTD code on MATLAB can also 

be an effective educational tool for electromagnetic 

simulations. This paper shows both the efficiency 

increases that the PCT allows over regular MATLAB 

based code, as well as some techniques that can be  

used to further optimize performance. Performance is 

benchmarked using the solver speed in millions of cells 

per second (MCPS), as suggested in [3]. This allows for 

easy comparison across different platforms and problem 

sizes. It is worth noting that the codes used for this paper 

are highly general, and no assumptions are made about 

uniform discretization to simplify the formulation. Thus, 

each updating coefficient array is unique and valid  

for the general FDTD formulation. Speeds of up to 

~300MCPS on problems with only near-field excitations, 

and ~267MCPS with a total-field scattered field (TF/SF) 

plane-wave source are obtained. These results are slower 

than those presented using CUDA written codes [1],  

[8], which presented peak speeds of ~1600MCPS using 

an NVIDIA Titan-Z card. Our results are significant 

improvements on regular vectorized-CPU MATLAB 

code (~11->12 MCPS), and does not require any CUDA 

programming.  

 

II. IMPLEMENTATION IN MATLAB 
The second-order FDTD MATLAB implementation 

as given in [2] is used as a starting point for code 

modifications. MATLAB is most efficient with 

vectorized code, so the updating equations are written in 

vectorized form as much as possible. As a result, the base 

FDTD code represents an efficient and straightforward 

implementation on the MATLAB engine. Since GPU 

benchmarks are commonly done using single precision 

because of the superior computing ability on GPUs for 

single precision problems, single precision is used for the 

CPU as well. By default, MATLAB operates in double 

precision, but can be cast into single precision through 

the single() function. Two benchmark cases are presented, 

where the solver runs for sufficient time-steps to ensure 

an accurate representation of the throughput. The first 

benchmarking problem is the excitation of a dielectric 

sphere of relative permittivity of 4 and radius of 1mm 

using the field radiated by a dipole antenna, and the 

second problem is the excitation of the same sphere 

using a plane wave. The reason for the two different 

configurations is to show the performance using a  

total field FDTD formulation versus a scattered field 

formulation performance. The CPU MATLAB code in 

this paper is written in an efficient vectorized style, 

which will perform matrix operations using multiple 

processor cores for simple functions (such as *, +, -) 

which constitute a large portion of the FDTD work load. 

To examine the efficiency of the code modifications over 
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larger domain sizes, the problem space is discretized 

using increasingly smaller cubic cells. The computational 

domain boundary is terminated using an air buffer of 8 

cells on each side from the sphere, and 6 CPML cells in 

each direction. The speed of the code in MCPS is 

presented over domains measured in millions of cells 

(MC). The problem execution time is measured using the 

tic/toc functions in MATLAB over the time marching 

loop, thus the one-time array initializations are not 

included. Additionally, all benchmarking is performed in 

MATLAB 2016b. Initial benchmarking is done using an 

NVIDIA Tesla K40C card, with the CPU code running 

on an Intel i7-4770 @3.4GHz (8 cores). 
 

III. GPU IMPLEMENTATION 
By moving the updating equations onto the  

GPU, substantially improved performance is obtained 

compared with the CPU implementation. The most 

direct implementation on the GPU is simply to call each 

array as its GPU equivalent, such as Ex = gpuArray(Ex). 

This requires no further modifications to the code than 

the above for each field variable and updating coefficients. 

Figure 1 shows the throughput obtained when directly 

porting each array into the GPU. For the dipole source, 

maximum speedups of ~10x are seen, with performance 

peaking around 115MCPS. The throughput of the GPU 

code increases with increasingly large domains, so that 

it never achieves a steady level of constant performance. 

In contrast, the CPU code has an essentially flat 

performance of 11 to 12MCPS for domains larger than 

~2MC, and only slightly slower speeds for smaller 

problem sizes. 
 

 
 

Fig. 1. NVIDIA Tesla K40C direct FDTD port compared 

against the CPU implementation of the code.   
 

A. Optimize CPML with arrayfun 

The updating of the fields in the CPML region on 

either the GPU or CPU is a significant portion of total 

computation time in comparison with the E and H field 

updating in the computational domain. In part this is due 

to the CPML being unable to be easily vectorized on the 

CPU. A variety of problems can be vectorized and show 

dramatic improvement in performance when using 

arrayfun() on the GPU [4-5, 7]. Here, we demonstrate the 

application of arrayfun() to the FDTD CPML absorbing 

boundary condition. The arrays must be of appropriate 

dimension to perform the scalar expansion employed in 

arrayfun(), which can necessitate reshaping the array in 

a preprocessing step. A snippet of the code listing for the 

arrayfun application to the updating of the Ez-field in the 

CPML region is shown in listing 1. Similar modifications 

are required for the other components in the CPML code 

to allow for arrayfun to be used for each field component. 

This modification is very efficient and results in much 

higher computational speeds as shown in Fig. 2. This 

yields peak speeds of ~157MCPS for the dipole source, 

a speedup of ~13x compared with respect to the CPU. 

Peak performance is for a problem size of ~24MC, with 

nearly steady performance for larger problem sizes.  

 

cpml_b_ez_zn=reshape(cpml_b_ez_zn,1,1, ncpml_zn); 

Psi_exz_zn=arrayfun(@times,cpml_b_ez_zn, 

Psi_exz_zn)+arrayfun(@times,cpml_a_ez_zn, 

Hy(:,:,1+cpmlznvec) - Hy(:,:,cpmlznvec) ); 

 

Psi_eyz_zn=arrayfun(@times,cpml_b_ez_zn, 

Psi_eyz_zn)+arrayfun(@times,cpml_a_ez_zn, 

Hx(:,:,1+cpmlznvec) - Hx(:,:,cpmlznvec) );     

 

Ex(:,:,cpmlznvec+1)=Ex(:,:,cpmlznvec+1)+ 

CPsi_exz_zn.*Psi_exz_zn; 

Ey(:,:,cpmlznvec+1)=Ey(:,:,cpmlznvec+1)+ 

CPsi_eyz_zn.*Psi_eyz_zn; 

 

Listing 1. Modification of Ez CPML component from [2] 

using arrayfun on the GPU. 

 

 
 

Fig. 2. Tesla K40C performance in comparison with the 

dipole benchmark on CPU using CPML modification. 
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B. Optimized E-field updating process 

MATLAB tends to be fastest when using vectorized 

code, and is capable of performing element-wise 

computation very efficiently. Performance decreases 

when blocks of a matrix must be multiplied instead of 

the entire matrix. The staggered grid in FDTD creates 

differently sized field components, and this leads to 

explicit indexing in the updating equations for either the 

electric or magnetic field components, depending on 

which field terminates the computational domain. In our 

analysis, the electric field is used to terminate the 

computational domain. The electric field components are 

updated with the staggered magnetic field component 

differences, as shown in listing 2. 
 

Ex(1:nx,2:ny,2:nz)=Cexe(1:nx,2:ny,2:nz).* 

Ex(1:nx,2:ny,2:nz)+Cexhz(1:nx,2:ny,2:nz).*... 

(Hz(1:nx,2:ny,2:nz)-Hz(1:nx,1:ny-1,2:nz)) ... 

+ Cexhy(1:nx,2:ny,2:nz).*... 

 (Hy(1:nx,2:ny,2:nz)-Hy(1:nx,2:ny,1:nz-1)); 
 

Listing 2. Ex updating equation for FDTD in MATLAB 

as presented in [2]. 
 

This means that portions of the electric field 

components and updating coefficients arrays are 

multiplied with portions of the magnetic field 

components. Quicker computation can be achieved by 

multiplying and writing to the entire electric field 

component arrays, without explicit indexing. By 

concatenating an array of zeros along the appropriate 

dimensions, the Hz array for updating Ex can be used 

without indexing, and becomes a simple vector 

operation. Listing 3 shows the equivalence of the two 

operations.  

 𝐴 = [𝐻𝑧 0], 

 𝐵 = [0 𝐻𝑧]. 
Listing 3. Example of zero-padding arrays to accomplish 

indexless updating in electric field components. 
 

Consider two new matrices, 𝐴 and 𝐵. 𝐴 is the 'right' 

zero padded matrix, and 𝐵 is the 'left' zero padded 

matrix, where the zero padding is of appropriate size 

such that the resulting matrices have equal size to  

Ex. This removes any need to index 𝐴 or 𝐵, and 

reproduces the staggered difference in 𝐻𝑧 with the  

vector operation 𝐴 − 𝐵. The first and last row in 𝑦 will 

write incorrect values to Ex, but this can be handled by 

zeroing the updating coefficient array, 𝐶𝑒𝑥ℎ𝑧(: ,1, : ) =
0, 𝐶𝑒𝑥ℎ𝑧 (: , 𝑗 + 1, : ) = 0. Defining similar matrices 

𝐶 = [𝐻𝑦 0], 𝐷 = [0 𝐻𝑦], and zeroing the coefficient 

array 𝐶𝑒𝑥ℎ𝑦(: , : ,1) = 0,  and 𝐶𝑒𝑥ℎ𝑦(: , : , 𝑒𝑛𝑑) = 0, we 

can write the updating equation as: 𝐸𝑥 = 𝐶𝑒𝑥𝑒 ∗ 𝐸𝑥 + 

𝐶𝑒𝑥ℎ𝑧 ∗ (𝐴 − 𝐵) + 𝐶𝑒𝑥ℎ𝑦 ∗ (𝐶 − 𝐷). This results in  

a speedup in MATLAB by removing the explicit 

subscripting that is ordinarily required. The example 

code listing below shows how the zero padding is 

performed within MATLAB: 

 𝐴 = cat(2, Hz, zeros(nx, 1, nz + 1)), 

 𝐵 = cat(2, zeros(nx, 1, nz + 1), Hz), 

the updating modifications to the other electric field 

components are similar. The integer in the 'cat' command 

represents the dimension along which the zero array is 

appended. '1' corresponds to the x-axis, '2' corresponds 

to the y-axis, and '3' to the z-axis. The effect of these 

changes are seen in Fig. 3, where a large speedup  

is obtained over solely modifying the CPML. This 

concatenation approach yields peak speeds of 

~220MCPS – an increase of ~70MCPS over just the 

CPML modification. This performance can be increased 

further by putting the various FDTD updating arrays into 

a single function call, with each component of the 

electric or magnetic field using an arrayfun() call on a 

sub-function that will update the field component. This 

is detailed in the listings given in the appendix. The 

CPML boundaries are similarly put into a single function 

that internally updates each boundary using the 

arrayfun() approach. The results of this optimal updating 

are shown in Fig. 4. This shows a maximum increase  

of ~90MCPS, yielding maximum performance of 

310MCPS. With the optimal updating established, the 

analysis for the plane-wave benchmark is shown in  

Fig. 5. The peak performance in the plane wave is 

~270MCPS, a full 40MCPS less than the dipole case. 

The overall shape of the two curves are very similar, with 

a performance loss incurred by the extra updating 

required in the TF/SF formulation.  

 

 
 

Fig. 3. NVIDIA Tesla K40C performance with 

concatenated E-field modification.  
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Fig. 4. NVIDIA Tesla K40C performance with optimal 

updating. 
 

 
 

Fig. 5. Comparison of planewave benchmark and dipole 

benchmark on K40C. 

 

IV. BENCHMARKING SEVERAL GPUs 
With the completion of the optimization of the code, 

the same benchmarking analysis is performed on 

different NVIDIA graphics cards with each method, for 

both the plane wave and dipole cases. The analysis is 

restricted to the dipole case, as the plane wave results 

show essentially the same performance curves, with 

reduced maximum speeds. An NVIDIA GTX-780 (3GB) 

and NVIDIA Titan-Z (12GB) are chosen to compare  

the results of the developed code. While the Titan-Z 

nominally has 12GB of memory, it is spread across two 

6GB processors on the same physical card, which are 

addressed separately within MATLAB. Thus, only 6GB 

of memory is addressable at a time in the current 

implementation. In Fig. 6, the comparison between the 

Tesla K40C, GTX-780, and Titan-Z is shown for the 

dipole case. Similar max speeds are obtained for each of 

the cards. The K40C has a maximum speed of 310MCPS, 

the GTX a maximum speed of 303MCPS, and the Titan-

Z a maximum speed of 367MCPS. However, both the 

GTX and Titan-Z demonstrate a marked reduction in 

speed after hitting their peak performance – thus, an 

‘optimal’ problem size is smaller than one using the 

K40C card. Since different versions of MATLAB can 

sometimes improve or even reduce the performance of 

different code [9], this behavior may change with 

different versions of MATLAB and the PCT.  

 

 
 

Fig 6. Comparison of optimal updating for three 

NVIDIA cards for dipole problem.  

 

V. CONCLUSION 
In this paper, the implementation of a FDTD solver 

in MATLAB using the parallel computing toolbox  

and its GPU computing capabilities is examined. The 

appendix lists in some detail functions from the best code 

developed in this paper. We avoid the use of specialized 

CUDA based programming in order to present an easy to 

implement code that can achieve substantial speedups in 

MATLAB. Code is benchmarked across several GPUs 

and problem types. Sizeable computational speeds on 

problems of practical sizes with CPML absorbing 

boundaries are achieved. A method of removing explicit 

indexing for one set of field-updating in the FDTD  

loop is presented that shows strong improvements on 

throughput that might be similarly useful in other 

vectorized programming languages. 

 

APPENDIX 
A more complete listing of the optimized updating 

code for a generic FDTD problem is given in this listing. 

First, the form of the electric field updating step within 

the main FDTD loop is shown in listing 4. The function 

outputs the updated electric field components, and takes 

as inputs the field components, updating matrices, and 

computational domain size. 

 

[Ex, Ey, Ez] = updateEfields( Ex, Cexe, Cexhz, Cexhy,  

        Ey, Ceye, Ceyhx, Ceyhz,  Ez, Ceze, Cezhx, Cezhy,  
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        Hx, Hy, Hz, nx, ny, nz); 

 

Listing 4. Form of the electric field updating step in the 

time marching loop.  

 

The function “updateEfields” contains the 

concatenated field updating as a separate step for  

each field component. Listing 5 shows this for the y-

component of the field, with the equations and matrices 

A1 and B1 having a similar form for the other 

components.  

 

A1 = zeros(nx+1, ny, 1, 'gpuArray'); 

B1 = zeros(1, ny, nz+1, 'gpuArray'); 

  

Ey = arrayfun(@updateEcomponent, Ey, Ceye, Ceyhx,  

    cat(3, Hx, A1), cat(3, A1, Hx), ... 

    Ceyhz, cat(1, Hz, B1), cat(1, B1, Hz)); 

 

Listing 5. Ey updating step within “updateEfields” 

function. 

 

Finally, this calls the subfunction 

“updateEcomponent”, which takes as input the 

appropriate field component, coefficient matrices, and 

auxiliary matrices. This is shown in listing 6. The 

function updates the input field with purely element wise 

operations.  

 

function [A] = updateEcomponent(A, B, C, D, E, F, G, 

H) 

  

 A = A.*B + C.*(D - E) + F.*(G - H); 
 

Listing 6. Function updateEcomponent. 

 

A nearly identical set of functions are defined for the 

magnetic field components updating step. Similarly, the 

CPML updating step for the electric and magnetic fields 

are called as one function, which contains bsxfun() 

function calls for efficient updating. This is shown in 

listings 7 and 8. 

 

[Hx, Hy, Hz, Psi_hyx_xn, Psi_hzx_xn, Psi_hzy_yn,         

Psi_hxy_yn, Psi_hxz_zn, Psi_hyz_zn,   Psi_hyx_xp, 

Psi_hzx_xp,    Psi_hzy_yp, Psi_hxy_yp,Psi_hxz_zp, 

Psi_hyz_zp]  = update_magnetic_field_CPML_ABC  

(Hx, Hy, Hz, Ex, Ey, Ez, cpml_b_mx_xn, 

cpml_a_mx_xn, Psi_hyx_xn, Psi_hzx_xn, 

CPsi_hyx_xn, CPsi_hzx_xn,  cpml_b_my_yn, 

cpml_a_my_yn, Psi_hzy_yn, Psi_hxy_yn, 

CPsi_hzy_yn, CPsi_hxy_yn,  cpml_b_mz_zn, 

cpml_a_mz_zn, Psi_hxz_zn, Psi_hyz_zn, CPsi_hxz_zn, 

CPsi_hyz_zn,  n_cpml_xn, n_cpml_yn, n_cpml_zn, ... 

cpml_b_mx_xp, cpml_a_mx_xp, Psi_hyx_xp, 

Psi_hzx_xp, CPsi_hyx_xp, CPsi_hzx_xp, ... 

cpml_b_my_yp, cpml_a_my_yp, Psi_hzy_yp, 

Psi_hxy_yp, CPsi_hzy_yp, CPsi_hxy_yp, ... 

cpml_b_mz_zp, cpml_a_mz_zp, Psi_hxz_zp, 

Psi_hyz_zp, CPsi_hxz_zp, CPsi_hyz_zp, ... 

n_stmx, n_stmy, n_stmz, nx, ny, nz); 

 

Listing 7. The function call for updating all the CPML 

boundaries within the domain for the magnetic field. 

 

Psi_hyx_xn = bsxfun(@times, cpml_b_mx_xn, 

Psi_hyx_xn)  + bsxfun(@times, cpml_a_mx_xn, 

diff(Ez(1:n_cpml_xn+1, :,:) , 1, 1) ); 

  

Psi_hzx_xn =bsxfun(@times,  cpml_b_mx_xn, 

Psi_hzx_xn)   + bsxfun(@times, cpml_a_mx_xn, 

diff(Ey(1:n_cpml_xn+1, :,:) , 1, 1) ); 

  

Hy(1:n_cpml_xn, :,:) = Hy(1:n_cpml_xn, :,:)  + 

CPsi_hyx_xn.* Psi_hyx_xn; 

Hz(1:n_cpml_xn, :,:) = Hz(1:n_cpml_xn, :,:)  + 

CPsi_hzx_xn.* Psi_hzx_xn; 

 

Listing 8. The ‘xn’ boundary of CPML updating within 

the function call. 

 

The bsxfun() call is used for updating the CPML 

matrices efficiently. A boolean check can be implemented 

for domains with mixed boundaries with little impact on 

the performance. 
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