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Abstract ─ In this paper we illustrate a particular 

analytical numerical model of passive magnetic bearings 

with axial magnetization. The approach is based on  

the magnetic charges method. This method avoids the 

utilization of the finite element analysis. In relation to  

the system geometry, we find explicit formulations  

for computing magnetic fields by simple numerical 

integrations. A detailed magnetostatic model is developed 

and the nonlinearity of the magnetization vector M of  

the ring magnets can be considered by a very simple 

modification of the equations illustrated. The equations 

can be immediately implemented in a mathematical 

software and only few minutes are sufficient to obtain 

the results. 
 

Index Terms ─ Levitation, magnetic bearings, 

magnetostatic field, natural frequencies, stiffnesses. 
 

I. INTRODUCTION 
The magnetic levitation allows the suspension of 

one object above another without the two coming into 

contact. There are several studies and applications of  

this phenomenon [1], [2] and one of the best known is 

represented by passive magnetic bearings [3-6]. Generally 

these bearings can be of two types depending on the 

direction of polarization of the rings: axial or radial. In 

both cases, the forces that keep the rings separate are 

repulsive. Therefore, the rings of these bearings are 

arranged with the same poles facing each other. The 

value of these repulsive forces depends on the air gap 

between the facing surfaces. The air gap changes as  

a function of the applied forces. Consequently, it is 

possible to define a bearing stiffness which varies 

depending on the magnitude of the load applied and/or 

by the mutual position of the rings. Since the rotating 

rings of the magnetic bearings are always keyed to a 

shaft on which other elements are also fixed, an elastic 

system characterized by a certain stiffness and mass is 

defined. Therefore, we can evaluate the natural vibration 

frequencies of this mechanical system. These frequencies 

depend on the stiffness and mass suspended by the 

magnetic levitation. Since the stiffness changes with the 

mutual position of each pair of facing rings, the stiffness 

and the natural frequency of the system vary versus  

the applied load. Thus, in general, with regard to each 

stationary working condition of the magnetic bearings, a 

natural frequency of the system is fixed. In this respect, 

we have developed a model based on magnetic charges 

to evaluate stiffnesses and natural frequencies of a 

magnetic levitation system with a passive axial magnetic 

bearing. We note that the same procedure can be easily 

extended to calculate the above mentioned stiffness and 

frequencies also for passive radial magnetic bearing. 

 

II. CONFIGURATION OF THE SYSTEM  

Figure 1 shows the case study. The polarized ring A 

is fixed. The moving ring of the bearing is denoted by  

B. The two rings have the facing surfaces polarized with 

the same pole. The polarized ring B can rotate around  

its own axis with a certain angular velocity   and is 

positioned at a distance t from ring A. Therefore t is the 

air gap of the bearing. This air gap can also be considered 

as a translation degree of freedom of the system. The axes 

of the two rings are parallel but, in general not coaxial. 

An eccentricity e is defined: e represents a coaxiality 

error. The ring B supports a mass m whose value is equal 

to the sum of all the masses rigidly integral with the same 

ring B. The vertical force F is the axial force applied to 

the bearing. The dashed segments a and b represent the 

two circumferences that pass through the section centers 

of gravity of the polarized rings. The sections of these 

rings have been considered to be identical for both rings 

A and B. The shape of the sections is rectangular. Figure 

2 illustrates the magnetization vector M of A and B. The 

M direction is defined by different values of the angle  
 . Three cases have been considered:  = 90, 60, 30 

degrees. The discrete variability of the angle   has only 

been considered for illustrating a general procedure to 

obtain the equations of the field and the forces when the 

magnetization M depends on the same   and possibly 

on the radius. For simplicity, such procedure is illustrated 

by fixing the module of M to a constant value. Moreover, 

its direction does not change when the planes 1 and 2, 
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to which M belongs, radially move towards or away 

from the respective axes of the magnets A and B (see 

Fig. 2). If M depends on   and the radius r (the distance 

from the axes of the magnets), in all the integrals indicated 

in the following Section III, M and the other quantities 

versus   and r must remain under the integral sign (in 

this case the magnetization model is not linear). Moreover, 

also the volume charge density )(
M

Pρ  defined in the 

generic point P (end of the vector P) of the permanent 

magnets has to be considered. In the case study (M  

and   are constants), since the magnetization model is 

linear, the inclined magnetization can be decomposed  

in an axial and a circular component independent of   

and r. The circular component defines a flux inside the 

magnet and does not generate any external magnetic 

field outside the same magnet. Therefore, the circular 

components of M of the two polarized rings cannot 

interact since they produce no field and force outside the 

magnets. This consideration will be also illustrated by 

the numerical examples.  
 

 
 

Fig. 1. Axially polarized rings with eccentricity e.  

 

 
 

Fig. 2. Direction of the magnetization vectors M in the 

two polarized rings. 

 

III. EVALUATION OF THE MAGNETIC 

FIELD  
The calculation of the levitation forces has been 

performed by using the magnetostatic model and the 

magnetic charge method [7-9]. The surface charge density 

)(M P  and the volume charge density )(
M

Pρ : 

 n̂)()(M  PMP , (1) 

 )()(
M

PMP ρ , (2) 

were considered. This method can be considered a  

valid alternative to the finite element method that is  

often utilized [10], [11]. As a matter of fact, the time 

computation and the accuracy of the results can improve, 

even though an analytical formulation is necessary. 
 

A. Surface charge density )(M P  for the polarized 

rings A and B 

In Fig. 3 an infinitesimal element of the magnet  

A is illustrated. The point P represents the center of  

the element. The element shows six infinitesimal faces 

denoted by dS1, dS2,…, and dS6. The correspondent 

normal versors are 1
n̂ , 2

n̂ , …, and 6
n̂ . The expressions 

of the versors can be suitably expressed versus the angle 

.θ  The magnetization vector M(Mx, My, Mz) is applied 

to the point P of the infinitesimal magnet illustrated in 

Fig. 3. The moduli with the signs Mx, My, and Mz of  

the components of M can be expressed versus the angles 

θ and   (see Fig. 4). By using Eq. (11), we obtain the 

six surface charge densities 
iMA  relative to the surfaces 

dSi (i=1, 2, …, 6) of the infinitesimal magnet A: 

  sin1MA M , (3) 

  sin2MA M , (4) 

  cos3MA M , (5) 

  cos4MA M . (6) 

For the surfaces dS5 and dS6, 5MA  and 6MA  are equal 

to zero (M is always perpendicular to the normal straight 

line of the surfaces dS5 and dS6). The surface charge 

densities 
iMB  of the polarized ring B are obtained by 

changing the sign of the 
iMA . 

 

B. Volume charge density )(
M

Pρ  for the polarized 

rings A and B 

By observing Figs. 3 and 4 we obtain: 

 
22

cos

yx

y

pp

p
MM x



  , (7) 

and 

 
22

cos

yx

x

pp

p
MM y



  , (8) 

where px, py, and pz are the components of the vector P 

that identifies the point P. By using Eq. (2) and by deriving 
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Eqs. (7) and (8) with respect to px, and py, respectively, 

we obtain: 

 
2/3)(

cos
22

yx

yx

pp

pp
M

p

M

x

x







 , (9) 

and 

 
2/3)(

cos
22

yx

yx

y

y

pp

pp
M

p

M







 . (10) 

The partial derivative zz pM  /  is equal to zero. By 

substituting Eqs. (9), (10), and zz pM  / = 0 in Eq. (2), 

we note that volume charge density )(MA P  is always 

equal to zero. For the magnet B we obtain the same result, 

i.e., 0)(MB P , whatever the value of   is. 

 

 
 

Fig. 3. Infinitesimal element of the polarized ring A with 

versors outgoing from the surfaces. 

 

 
 

Fig. 4. Magnetization vectors components Mx, My, and 

Mz, in the generic point P of the magnet A (see Fig. 3). 

t-t is the tangent to the circumference of radius r in P (P 

is always perpendicular to t-t). 

C. Surfaces dS1, dS2,…, and dS4 

In order to evaluate the magnetic induction 

generated by the magnet A and the forces/moments 

applied to the magnet B, since 
5MA , 

5MB , 
6MA , 

and 6MB  are equal to zero, we evaluate the only 

expressions of the surfaces dS1, dS2,…, and dS4. By 

observing Fig. 5, we can define the expressions of the 

infinitesimal surfaces dSi with i=1,2, …, 4 versus dθ , dr 

and h. Denoting by Pi (pxi, pyi, pzi) the vectors that 

identify the centers Pi of the above-mentioned surfaces 

dSi, we obtain the expression of the components pxi, pyi, 

and pzi in function of θ , r and h. 
 

D. Evaluation of the magnetic induction )(P'B  

In order to evaluate forces and moments applied to 

the magnet B, four contributions )(P'B
1

, )(P'B
2

, …, 

)(P'B
4

 of the magnetic induction have to be considered. 

P’ is the vector that identifies the point where the magnetic 

induction will be computed is given by [4]: 

 i
i

i
i dS

S
3

)((

4
)(

MA0

P'-P

P'-P)P
P'B






, (11) 

with i=1, 2, …, 4.
0

  is the free space permeability. The 

volume contribution to )(P'B
i  is always equal to zero 

because 0)(
AM

P . By substituting Eqs. (3)-(6) and 

the expressions of pxi, pyi, and pzi versus θ , r and h in Eq. 

(11), we achieve the components )(P'
xi

B , ( )P'yiB , and 

)(P'
zi

B of )(P'B
i . For example, the components 

1( )P'xB

is the following: 

 
0

1
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 (12) 

The other components have a similar formulation. The 

components )(P'
x

B , ( )P'yB  and ( )P'zB  of the resultant 

magnetic induction )(P'B  in the generic point P’ of  

the B magnet surfaces are obtained by adding the 

correspondent components )(P'
xi

B , ( )P'yiB , and )(P'
zi

B  

with i=1, 2, ..., 4. Since the sign of )(P'
xi

B , ( )P'yiB , and 

)(P'
zi

B  is opposite to the sign of )(1 P'xiB , )(1 P'yiB , 

and )(1 P'ziB , respectively, when i is equal to 3 and 4 

and the corresponding moduli are equal to each other, we 

have: 
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 )()()( 21 P'P'P' xxx BBB  , (13) and analogous expressions of ( )P'yB  and ( )P'zB . 
 

 
 

Fig. 5. Evaluation of: (a) dS1, (b) dS2, (c) dS3, and (d) dS4 with the relative P1, P2, P3, and P4 centres (see also Fig. 3) 

in the magnet A. 
 

IV. EVALUATION OF FORCES AND 

MOMENTS APPLIED TO THE POLARIZED 

RING B 

With reference to Fig. 6, the infinitesimal resultant 

force dF applied from the magnet A to a generic 

infinitesimal element of the magnet B is obtained by 

adding four force dFi (i=1, 2, …, 4): 

 4321
dFdFdFdFdF  . (14) 

Each of them is applied to the correspondent surfaces dSi 

that define the infinitesimal element of the polarized ring 

B (see Fig. 6). We observe that these surfaces have the 

same expressions of the correspondent surfaces defined 

for the magnet A. Since the surfaces charges densities 

5MB  and 6MB  are equal to zero, the surfaces dS5 and 

dS6 relative to the ring B do not give any contribution  

to dF. By denoting P’i(p’xi, p’yi, p’zi) the vectors that 

identify the centers P’i of the above-mentioned surfaces 

dSi (i=1, 2, …, 4), we can define the expressions of p’xi, 

p’yi, and p’zi versus pxi, pyi, pzi, e, and t (see Fig. 6). The 

forces dFi are applied to the points P’i. The evaluation of 

dFi is performed by the following relation: 

 iiiii dS'' )()(B PBPdF  , (15) 

where i=1, 2, …, 4. By using Eq. (13) and the analogous 

expressions of ( )P'yB  and ( )P'zB , integrating Eq. (15), 

we compute the moduli with the signs Fxi, Fyi, and Fzi of 

the Fi components. For example, the components Fx1 and 

Fx3 are the following: 

 
drdr'BMF

e

i

xx

r

r

 



2

0

11 )(sin P
, (16) 

 hdr

r

r

'BMF
e

i

x
x  )(sin

3
3 P . (17) 

The other components have an analogous formulation. 

Therefore, by adding the four forces Fi (Fxi, Fyi, Fzi) we 

obtain the resultant force applied to the ring B. 
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Fig. 6. Infinitesimal forces: (a) dF1, (b) dF2, (c) dF3, and (d) dF4 applied to the corresponding centres P1, P2, P3, and 

P4 of the surfaces dS1, dS2, dS3, and dS4 of the infinitesimal element of the magnet B. 
 

V. EVALUATION OF THE TORQUE 

APPLIED TO THE POLARIZED RING B 
In order to check the correctness of the physical 

mathematical model, it is suitable to verify the law of 

energy conservation. This check can be performed by 

computing the moment component 
z

  along the axis Z 

applied from the ring A to the ring B. 
z


 
must always be 

equal to zero, whatever the values of   and e are. If this 

condition is not met, the law of energy conservation is not 

verified and the model is wrong (the ring B spontaneously  

rotates). The computation of 
z

  is performed by integrating 

the following relation: 

 
4321 zzzzz

 ddddd   , (18) 

where 

 '
iizi

PdFd  , (19) 

and i=1, 2, …, 4. 
zi

d  represents the moment around the 

axis Z generated from the force dFi applied to the 

corresponding surface dSi of the infinitesimal element  

of the ring B. Therefore, by Eqs. (18) and (19) we obtain 

the following modulus with sign of 
z

 : 

2

0

sin [ (  cos ,  sin , )( )sin -
2

(  cos ,  sin , ) cos ]
2

[ (  cos ,  sin , )( )sin
2

(  cos ,  sin , ) cos ]
2

e

i

y

r

z

r

x

y

h
M r B r θ r θ e h t r e θ

x

h
B r θ r θ e h t r θ

h
r B r θ r θ e t r e θ

h
B r θ r θ e t r θ dθdr.



      

   

   

 

  (20) 

In relation to the law of energy conservation the 

value of 
z

  computed by Eq. (20) must be equal to zero, 

whatever the angle   of the magnetization M is (see 

Fig. 2). Eq. (20) has been numerically evaluated and in 

Part II we briefly discuss this aspect. The values of 
z



versus   and e obtained are very small and confirm the 
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previous statement.  
 

VI. AXIAL/RADIAL STIFFNESSES AND 

NATURAL FREQUENCIES 

A. Stiffnesses 

In general, the computation of the stiffness K is 

based on the following relation: 

 
p

pF
 K






)(
, (21) 

where F(p) is the force versus the parameter p that 

defines the degree of freedom (DOF) along which the 

stiffness is computed. In the present study we evaluate 

the axial stiffness Kt along the axis Z versus the air gap 

t: 

 
t

tF
 K z

t 




)(
, (22) 

and the radial stiffness Ke along the axis Y where the 

eccentricity e is defined: 

 
e

eF
 K

y

e 




)(
. (23) 

The evaluation of Ke can be interesting also when we 

study an axial magnetic bearing. As a matter of fact, Ke 

has to be considered together with the other radial 

stiffnesses of the two radial bearings keyed on the shaft. 

The dynamic behaviour of the system also depends on 

Ke. 
 

B. Natural frequencies 

The natural frequencies of a system depend on its 

mass and stiffness. From the modelization point of view, 

the number of these frequencies is equal to the number 

of degrees of freedom of the model. In relation to the 

device schematized in Fig. 1, we can consider various 

models. The choice of the model is strictly connected to 

the dynamic behaviour of the real system that we want 

study. If a rigid body schematization of the real system 

is acceptable and the radial bearings of the vertical shaft 

have a very high radial stiffness, we can modelize the 

structure by one degree of freedom (DOF) model (the 

DOF along the axis Z). If the flexural stiffness of the 

shaft is not high and there are radial excitation forces, it 

is necessary to introduce new DOFs. Moreover, also if 

the radial stiffness of the radial bearing is not high, other 

radial DOFs associated with these bearing have to be 

considered. We observe that the system can become  

very complex. The vibrational behavior will depend on 

nonlinear magnetic stiffnesses and also small chaotic 

precessional motions can rise. In a demanding practical 

application, this kind of motions can be due to the 

alignment errors of the shaft (concentricity, circularity, 

perpendicularity, plumb, straightness, see Fig. 7 [12]). In 

the present study we can limit ourselves to two simple 

cases. The first one considers a model with a DOF only 

along the axis Z. In the second case the model has a DOF 

only along the axis Y. The two models are illustrated  

in Figs. 8 (a) and 8 (b), respectively. The model of Fig. 

8 (a) can be used to study the dynamical behaviour of  

a device where all the stiffnesses are much higher than 

the stiffness Kt defined by Eq. (22). In Fig. 8 (a) mtot, 

represents the total suspended mass. Conversely, Fig.  

8 (b) shows a model to study a system with a shaft that 

can only horizontally translate. By this schematization 

we again assume that the stiffness of all parts of the 

device are very high with respect to the radial stiffness 

Ke furnished by Eq. 23). In this case the translation DOF 

could be due to the radial clearances of the radial 

bearings. These clearances would allow a small 

horizontal translation of the rigid shaft. Therefore, the 

shaft horizontally translates during its rotation. Small 

rotations around the centres of the bearing could also 

occur. Nevertheless, if the flexural stiffness of the shaft 

is high, in general the influence of the corresponding 

rotational DOFs on the vibration behavior is negligible. 

With reference to this hypothesis and overall for 

simplicity, we can consider the simplified model 

illustrated in Fig. 8 (b). The system would normally be 

studied by using complex modelizations based on rotor 

dynamics (see, for example, [13]). The four masses 

indicated in Fig. 8 (b) represent the point masses to 

modelize, for example, the rotating mass of a hydrounit 

for electric generation (see Fig. 9 [12]). If we assume to 

substitute the oleodynamic thrust bearing (see particular 

C in Fig. 9) with a passive magnetic axial bearing (see 

Fig. 1), we can suitably fix the values of m1, m2, …, and 

m4 versus the masses of the various rotating parts of the 

hydrounit [mass of the thrust bearing, shafts, rotor, 

turbine (not illustrated), etc.]. Therefore, the mass of  

the polarized ring B indicated in Fig. 1 contributes to 

defining the mass m2 shown in Fig. 8 (b). With reference 

to the two models illustrated in Fig. 8 we evaluate the 

corresponding natural angular frequencies 
h

em , 
tot

emω , 

h
tm , and 

tot
tmω  of the system by the following relations: 

 

4321

)(

mmmm

eK
 e

em
h 
 , (24) 

 

tot

e
em m

eK

 
tot

)(

 , (25) 

 

4321

)(

mmmm

tK
 t

tm
h 
 , (26) 

 

tot

t
tm m

tK

 
tot

)(

 . (27) 

As soon as mtot, m1, m2, …, and m4 have been fixed and 

the stiffnesses Kt and Ke are known [see Eqs. (22) and 

(23)], we can compute the natural angular frequencies 
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versus the air gap t and the eccentricity e [when we 

evaluate )(tK
t

 we fix a certain value of e and vice versa]. 

 

 
 

Fig. 7. Alignment errors of a turbine and generator shafts 

of a hydrounit [12]. 
 

 
 

Fig. 8. Simplified physical model of the system with one 

(a) vertical and (b) horizontal DOF. 

 

 
 

Fig. 9. A typical vertical disposition rotor/stator with 

thrust bearing C of a hydrounit for electric generation [12]. 

VII. CONCLUSION 
A detailed formulation for evaluating forces, 

moments, stiffnesses and natural frequencies of a thrust 

magnetic bearing has been presented. Equations for 

checking the correctness of the analysis based on the 

magnetic charges method was considered. A mechanical 

model referred to a vertical disposition of a hydrounit  

for electric generation for performing the numerical 

calculations illustrated in Part II has been developed. 
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