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Abstract ─ A distributed parallel Higher-order Method 

of Moments (HoMoM) for solving electromagnetic 

problems on CPU/GPU clusters is presented. An MPI/ 

OpenMP/CUDA parallel framework based on the GPU 

context technique is designed. An out-of-GPU memory 

scheme is employed to break the limitation of the GPU 

memory. To improve the performance of data transferring 

between main memory and GPU memory, an overlapping 

scheme based on asynchronous technique and CUDA 

streams is adopted. In comparison with the parallel CPU 

version only, numerical results including a metallic 

airplane and an airborne array with dielectric structures 

demonstrate the high performance of the proposed method. 

 

Index Terms ─ GPU-based HoMoM, GPU context, out-

of-GPU memory, overlapping, parallel framework. 
 

I. INTRODUCTION 
In the field of computational electromagnetics 

(CEM), the method of moments (MoM) is widely used 

for solving electromagnetic radiation and scattering 

problems [1]. It is well known that direct lower/upper 

(LU) decomposition solvers and iterative solvers are  

the most common ways to solve the matrix equations  

of MoM. In order to avoid slow convergence rates  

or divergence issues of iterative solvers, direct LU 

decomposition algorithms are utilized as matrix equation 

solvers. Unfortunately, with the electrical size of problems 

increasing, the solution time of LU solver increases 

rapidly due to the computational complexity of O (N3), 

where N is the number of unknowns. With the rapid 

development in computer hardware capabilities, parallel 

computing technique has been an efficiently approach 

for solving extremely complicated engineering problems. 

In recent years, the Graphics Processing Unit (GPU) has 

become a prevalent commodity in parallel computing 

due to its powerful computational capability. 

Since the Nvidia GPUs programmed through the 

CUDA API was introduced in 2006 [2], the GPUs 

provide a very attractive, low-cost hardware platform for 

CEM. The application of GPU in the area of CEM started 

in the finite-difference time-domain method (FDTD). In 

[3-5], the GPU-accelerated FDTD was implemented to 

deal with the 2D and 3D simulation problems, a good 

acceleration ratio can be obtained. However, MoM has 

received relatively little attention in the GPU context. 

The application of GPU acceleration using CUDA to 

MoM is presented in [6-8], and an iterative solution 

scheme for the linear system was adopted rather than  

a direct solving scheme. In [9-11], a GPU-accelerated 

implementation using Nvidia CUDA for the matrix 

assembly of the MoM using Rao-Wilton-Glisson (RWG) 

basis functions [12] was presented. However, the utilization 

of MAGMA library [13] prohibits its application on a 

distributed memory platform. In [14], an out-of-core 

scalable approach that can break the restrictions of GPU 

memory was introduced, but its performance get worse 

without the optimization of data-movement between 

GPU and CPU. In [15], an approach integrating the CUDA 

computing directly into the ScaLAPACK framework 

was presented and good speedup was obtained. However, 

the scale of matrix can be factorized is limited by the 

GPU memory. In very recent papers by Topa [16] and 

Mu [17], some efficient out-of-core techniques of GPU-

accelerated MoM were presented, but these work are also 

developed on a single CPU/GPU computing platform. 

Under this situation, a hybrid parallel CPU/GPU 

version of a higher-order method of moments (HoMoM) 

is presented in this paper. The proposed technique makes 

use of procedures with efficient out-of-GPU memory 

schemes and able to run on distributed memory systems 

with multiple CPU/GPU computing nodes. In the 

particular case of this paper, the GPU is used to accelerate 

the calculations of the LU decomposition during the 

matrix factorization step. The scattering of an airplane 

and the radiation of an airborne array are simulated to 

demonstrate the acceleration performance of the proposed 

algorithm. The implementation of the proposed hybrid 

CPU/GPU technique is summarized as: 1) an efficient 

MPI/OpenMP/CUDA parallel framework based on GPU 
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context technique is adopted to implement the hybrid 

parallel CPU/GPU procedures; 2) an efficient out-of-

GPU memory scheme is utilized to break the limitation 

of GPU memory, thus offering a possibility of handling 

complex EM problems; and 3) the asynchronous data 

transfer and CUDA streams techniques are used to 

overlap the data-movement and computation, which can 

effectively avoid the time of data transfer between CPU 

and GPU. Details about all these procedures are given in 

Section III. 

 

II. PARALLEL HIGHER-ORDER METHOD 

OF MOMENTS 
A brief review regarding the basic principles of the 

integral equation theory, higher-order basis functions 

and the LU decomposition algorithm is given in this 

section. Readers are referred to [1] for an in-depth 

discussion of the theory. 
 

A. Integral equations 

The electromagnetic theory employed in this paper 

is based on the so-called Surface Integral Equations 

(SIEs) [18] in the frequency domain for equivalent electric 

and magnetic currents over dielectric boundary surfaces 

and electric currents over Perfect Electric Conductors 

(PECs). The set of integral equations obtained are solved 

by using MoM, and specifically using the Galerkin’s 

method. The code is able to handle inhomogeneous 

dielectrics categorized by a combination of various 

homogeneous dielectrics. Therefore, any composite 

metallic and dielectric structure can be represented as  

an electromagnetic system consisting of a finite number 

of finite-size linear, homogeneous and isotropic regions 

situated in an unbounded linear, homogeneous and 

isotropic environment.  

For general models, the integral equation employed 

by the code is the well-known Poggio-Miller-Chang-

Harrington-Wu (PMCHW) formulation [1, 19]. However, 

when one of the boundary surfaces between two different 

regions is PEC, the magnetic currents are equal to zero 

at the boundary surface and that equation degenerates 

into the electric field integral equation (EFIE) [20]. 
 

B. Higher-order basis functions 

In order to approximate the solution to the 

aforementioned integral equation, higher-order 

polynomials over wires and quadrilateral patches are 

used as basis functions over relatively large subdomains 

[1]. Typically, the number of unknowns for the HOBs  

is reduced by a factor of 10 compared with that for 

RWGs, and thus the use of HOBs significantly reduces 

the computational complexity and memory requirement.  

There are also some other advantages in using the 

polynomial basis functions. For example, the intermediate 

results obtained in evaluating the elements of the 

impedance matrix for lower-order can be used in the 

computation of the elements of the impedance matrix 

when using higher-order polynomials. In addition, Green’s 

function for each pair of integration points belonging  

to two patches is only evaluated once. These advantages 

improve the efficiency of the matrix filling for the HOBs 

presenting a straightforward implementation. 

 

C. LU decomposition algorithm 

Once the system of equations is obtained, the code 

makes use of the LU decomposition algorithm to  

solve the problem and obtain the solution. Specifically, 

the code uses the LU right-looking algorithm. This 

decomposition technique mainly includes the pivoting 

step, the panel column factorization, the panel row 

update and, finally, the trailing submatrix update. Given 

deeper details about the code involved on the LU 

decomposition, the routines pzgetrf2, pztrsm and pzgemm 

are the ones responsible of each of the steps. It is worth 

noting that the update operations contribute more than 

80% of the computation time for a large scale dense 

complex matrix.  
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Fig. 1. Processes of LU Decomposition in ScaLAPACK 

or Intel MKL: (a) panel column factorization, (b) panel 

row update, and (c) trailing update. 

 

Figure 1 shows a summary of the algorithm where 

the arrows indicate the data dependency on each step.  

In this way, for example, during the pivoting step, all  

the coefficients of the panel column have to be known by 

all the MPI processes involved on the decomposition. 

Then, network communication is required between these 

processes degrading the parallel performance. This 

behavior can be extrapolated to the rest decomposition 

steps which are repeatedly executed until the factorization 

is completed. 
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III. HYBRID PARALLEL CPU/GPU 

IMPLEMENTATION 
Details about the implementation of the proposed 

hybrid parallel CPU/GPU technique are given in this 

section. The parallel implementation of the method is 

described next meanwhile the out-of-GPU memory 

scheme is detailed later. It is worth to mention that, only 

using an MPI-based multi-node processing is not enough 

to achieve good parallel performance. It is also required 

an optimization on the data-movement between GPU 

and CPU memory. All these details are described in the 

next subsections. 

 

A. Parallel framework based on GPU context  

As any other computational technique running on 

distributed memory CPU/GPU clusters, the proposed 

GPU HoMoM implementation makes use of MPI to 

perform the internode communication. 

The simplest parallel framework one can consider is 

to assign one CPU core and one GPU card to each MPI 

process. However, typically, the number of GPU cards  

is usually less than that of CPU cores available in the 

system. Under this scenario, there is an unmatched 

situation between MPI processes and GPU cards, which 

would lead to an unbalanced computing power in the 

different MPI processes. In order to alleviate this issue, 

different techniques reduce the number of MPI processes 

of each node to match with the number of GPU cards, 

meanwhile, multi-threads techniques (i.e., OpenMP) are 

adopted to make full use of the CPU cores of each node. 

This improved scheme assigns multiple CPU cores and 

one GPU card to each MPI process, ensuring a good 

balance between the computes nodes. However, due  

to the low number of MPI processes involved on the 

execution (typically, CPU/GPU cluster has only one GPU 

card per compute node), the amount of communication 

needed increases rapidly reducing the performances of 

the implementation. Therefore, the implementation of  

an efficient parallel framework with good balance and 

performance is not straightforward. Fortunately, the 

context technique of CUDA makes this possible.  

Based on the CUDA context technique, multiple MPI 

processes can use a GPU card simultaneously.  

Each MPI process opens a CUDA context on the GPU 

card, and the resources of the GPU card are averagely 

distributed to each MPI process. It is equivalent to 

partition one GPU card into several virtual GPU cards. 

Each MPI process can use its own virtual GPU resources 

to accelerate the computing tasks. Note that the OpenMP 

technique can also be adopted in this framework and the 

communication between CPU cores and GPU context is 

implemented by PCI-E system bus. The efficient parallel 

framework based on GPU context is shown in Fig. 2. 

It is worth noting that, in systems where only few 

CPU cores are available per node, the number of virtual 

GPU card can be equal to the number of CPU cores. In 

this case, the OpenMP technique is not required to provide 

a good power balance. However, when the number of 

CPU cores available per node is larger, the GPU context 

technique will consume a large amount of GPU resources. 

Thus, the total performance of the implementation will 

be drastically degraded. Then, the number of virtual 

GPU card must be reduced and the OpenMPI technique 

used. 
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Fig. 2. MPI/OpenMP/CUDA parallel framework base on 

GPU context technique. 

 

B. Out-of-GPU memory scheme 

As mentioned previously, the trailing update 

operation in the LU decomposition algorithm contributes 

in more than 80% of the computation time for a large 

scale dense complex matrix. The, it seems appropriate  

to accelerate the pzgemm routine employing the GPU 

power. In this phase, the computing task of each process 

is reduced to perform matrix multiplication in the form: 

C=C-AB (see Fig. 3 (a)). The matrix C is located on  

the process that executes the matrix multiplication,  

while the matrices A and B are obtained through MPI 

communication. 

The data required for GPU to complete certain 

compute tasks should be uploaded to it, so the size of the 

uploaded data has influence on the performances. Thus, 

in order to accelerate the whole matrix multiplication, 

the matrices B and C are divided into two parts C1 and 

C2, and B1 and B2, respectively. Then, the operation 

C1=C1-AB1 is performed in the CPU cores, meanwhile 

the operation C2=C2-AB2 is performed in GPU cards. 

Fig. 3 (b) illustrates this process. 

Note that when matrices B2 and C2 are too large  

to fit in GPU memory, the previous scheme must be 
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improved and this memory limitation has to be broken. 

Thus, an out-of-GPU memory scheme is implemented 

where matrices B2 and C2 are split into smaller matrices 

that can fit into the GPU memory. Then, through 

multiple data transfer and calculation, the process of 

trailing update is completed. Figure 3 (c) shows a sketch 

of this out-of-GPU scheme. 
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Fig. 3. The out-of-GPU memory scheme. 

 

C. Overlapping scheme 

The previous out-of-GPU memory scheme 

overcomes the restriction of GPU memory, offering the 

possibility of handling complex electromagnetics (EM) 

problems. However, the data transfer between CPU  

and GPU is a time consuming process. Fortunately, the 

asynchronous technique and CUDA streams can be used 

to overlap it with the calculation. 

Each MPI process opens several CUDA streams [21] 

on the GPU context (see Fig. 4). The CUDA stream are 

similar to a CPU pipeline operation queue. Then, matrices 

B2 and C2 are split into smaller matrices according to Fig. 

3 (c). These smaller matrices will be transferred to the 

GPU memory thought different CUDA streams using  

the CUDA asynchronous data transfer function. After  

the GPU calculation is completed, the results will be 

transferred back to RAM in the same way. Note that this 

transfer process must be executed when the number of 

CUDA streams is less than the number of smaller 

matrices. 

This overlapping scheme consists of three different 

operations: data transfer from CPU to GPU, GPU 

calculation and data transfer from GPU to CPU, these 

operations are performed by different hardware units.  

To control the time sequence, the operations in the  

same CUDA stream must be performed once at a time. 

However, different operation in different CUDA streams 

can be done in parallel. Note that the same operation 

cannot be executed at the same time in two different 

CUDA streams since they are performed by the same 

hardware unit. 
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Fig. 4. MPI process opens CUDA streams on GPU 

context. 

 

For example, in Fig. 5, we have four CUDA streams 

and the three operation marked with different colors. 

When one of the streams is involved in data transferring, 

another can be used for calculations at the same time. 

The data transfer and calculation of different CUDA 

streams can be executed in parallel, so the communication 

time is hidden. Moreover, the only work that CPU does 

is to start the GPU kernel function. Then CPU will do its 

own work without waiting for the ending of the GPU 

computing. 
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Fig. 5. Overlapping scheme of communication and 

computation on GPU context. 

 

IV. NUMERICAL RESULTS 
In order to demonstrate the correctness and the 

parallel performance of the proposed hybrid parallel 

CPU/GPU technique different benchmarks are run. The 

first test consists of the scattering analysis of PEC sphere 

used to check the correctness of the implementation.  
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The second test consists of the analysis of a perfectly 

conducting cylinder. This test is used to check the parallel 

performance of the method. Finally, some analysis of a 

real airplanes and antennas are presented to demonstrate 

that the method can solve real electromagnetic challenging 

problems. 

The computational platform used for these 

benchmarks is a high performance GPU cluster with 

seven computing nodes. Each computing node has two 

Intel Xeon two 12-core Intel Xeon E5-2692v2 2.2 GHz 

EM64T processors (12×256 KB L2 Cache and 30 MB 

L3 Cache), one NVIDIA Tesla K20c GPU card (4.6 GB 

memory of available) and 64 GB RAM. The nodes  

are connected with Infiniband switches. The code is 

developed using the FORTRAN/C/C++ hybrid languages 

based on MPI.  
 

A. Correctness of the implementation 

To validate the accuracy and efficiency of the 

proposed hybrid parallel CPU/GPU technique the analysis 

of a PEC sphere with radius of 10 λ is performed. The 

excitation is a z-axis polarized plane wave propagating 

along the x-axis direction. The sphere model (see Fig. 6) 

is discretized into 3258 bilinear patches given a total 

number of unknowns of 27,528. The bistatic RCS results 

are given in Fig. 7. A comparison with the analytic Mie 

solution is performed showing an excellent agreement. 
 

B. Performance testing 

The second test consists of the analysis of a perfectly 

conducting cylinder that is infinitely long along one 

direction and is illuminated by a transverse magnetic 

(TM)-polarized plane wave. This benchmark is used to 

check the performance of the method under different 

configurations: (1) a single node with 4 MPI processes 

(each MPI process opens 6 OpenMP threads) and one 

GPU and (2) two nodes with 8 MPI processes (each MPI 

process opens 6 OpenMP threads) and two GPUs. 

Figure 8 shows the benchmarking results for double 

precision complex matrices ranging from 1024×1024  

to 56320×56320 elements in size. The K20c GPU with 

4.6 GB of memory is limited to about 17000 unknowns. 

Figure 9 shows the benchmarking results for double 

precision complex matrices ranging from 1024×1024 to 

78848×78848 elements in size. The two K20c GPUs with 

2×4.6 GB of memory is limited to about 24000 unknowns. 
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Fig. 6. The model of a PEC sphere. 
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Fig. 7. RCS results in xoz plane from the PEC sphere 

with radius of 10 λ. 
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Fig. 8. Performance against matrix size for two versions 

of LU decomposition using a single node. 
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Fig. 9. Performance against matrix size for two versions 

of LU decomposition using two nodes. 

 

A comparison between the results given by the 

proposed hybrid parallel CPU/GPU technique and the 

CPU version only are given in both figures. On a single 

node, the computing speed of the 24 CPU cores with a 

single GPU is about 2.3 times than that obtained by using 

24 CPU cores alone. On two nodes configuration, the 

computing speed of the 48 CPU cores with two GPUs is 

about twice of that from using 48 CPU cores alone. The 

results show that the proposed technique can save at least 

50% of computation time on both distributed and shared 

memory systems. 
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C. Performance analysis for metallic structures 

This section contains the scattering results of a real 

airplane. This benchmark demonstrates that the proposed 

method can solve electromagnetic challenging problem 

as well. The airplane model is shown in Fig. 10. The 

airplane is 30.6 m long, 29.0 m wide and 11.8 m high. The 

bistatic RCS of airplane is simulated at the frequency 

440 MHz. The excitation is a z-axis polarized plane  

wave propagating along the negative x-axis direction. 

The airplane is discretized into 16,980 bilinear patches, 

and the total number of unknowns is 135,501.  
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Fig. 10. The model of an airplane. 

 

The two-dimensional (2D) RCS results are shown in 

Fig. 11. The 2D results computed by the parallel CPU 

version only are also given for comparison. Note that θ 

coordinate is measured from xoy plane to z axis and φ 

coordinate is measured from +x axis to y axis in this 

paper. The computation parameters are listed in Table 1. 

For this simulation, seven compute node of the described 

computational platform were used.  

 

Table 1: Computational parameters for the airplane 

Computational 

Resources 
Solving Time (s) Speedup 

24 CPU cores×7 2499.298 1 

(24 CPU cores and 

1 GPUs) ×7 
1089.444 2.294 

 
From the comparisons, one can see that the results 

of both CPU version only and the proposed hybrid CPU/ 

GPU technique present a very good agreement. The 

required memory of this simulation is about 274 GB when 

the memory provided by the GPUs is less than 34 GB. 

Thus, the proposed algorithm breaks the limitation of  

the memory of the GPUs as it was described previously. 

Regarding, the speedup between both codes, the hybrid 

CPU/GPU code is over 2 times faster, while a speedup 

of over 380 times is achieved compared to the sequential 

CPU version only.  
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Fig. 11. 2D RCS of the airplane: (a) xoy plane and (b) 

xoz plane. 

 

D. Performance analysis for composite metallic and 

dielectric structures 

Finally, the radiation pattern of an airborne array  

is presented. A microstrip array (20x4) is printed on a 

substrate εr = 4.5 and μr = 1.0 and is housed in a 5.27 m 

by 0.9524 m by 0.018 m cavity in a ground plane, as 

shown in Fig. 12 (a). The feeding line for each patch  

has the radius of 1.8 mm. The dimensions of each patch 

element are 0.2056 m by 0.1548 m, and the gaps between 

any two neighboring elements are 0.0579 m by 0.0833 m 

along the length and width directions. The microstrip 

array is installed 4.0 m above the airplane, as shown in 

Fig. 12, and the distance between the center of the array 

and the nose of the airplane is 15.4 m. A -30 dB Taylor 

amplitude distribution is utilized in the array feed along 

the y-direction and the mainlobe is also directed towards 

the tail. The operation frequency of the array is 440 MHz. 

The airborne model is discretized into 21,602 bilinear 

patches, and the total number of unknowns is 155,494. 

The 2D and 3D gain patterns obtained by the 

proposed method are shown in Fig. 13. The 2D gain 

patterns computed by the CPU version only are also 

given for comparison where a very good agreement is 

clearly seen. In addition, the computation parameters  
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are listed in Table 2. 
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Fig. 12. The airborne array model: (a) the microstrip 

patch array with 20×4 elements, and (b) the airborne 

microstrip patch array. 
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Fig. 13. 2D and 3D gain patterns of the airborne array 

antenna: (a) xoy plane, (b) xoz plane, and (c) 3D pattern. 

 

Table 2: Computational parameters for the airborne array 

Computational 

Resources 
Solving Time (s) Speedup 

24 CPU cores×7 3749.444 1 

(24 CPU cores 

and 1 GPUs) ×7 
1577.735 2.376 

 
In this simulation, we can also see that the limitation 

of the memory of the GPUs is broken. The required 

memory of the airborne array (about 360 GB) is quite 

larger than the available memory of the GPUs (about  

34 GB). Moreover, a speedup of over 2 times is achieved 

compared to the parallel CPU version only, while 

compared with the sequential HoMoM version, the 

speedup of the hybrid CPU/GPU technique is about 400 

times. 

 

V. CONCLUSION 
In this paper, a hybrid parallel CPU/GPU HoMoM 

method is presented and used to simulate the scattering 

of an airplane and the radiation pattern of an airborne 

array. The hybrid parallel CPU/GPU procedure is proved 

to have a good speedup in the same degree of accuracy 

compared with the parallel HoMoM using the Intel MKL 

LU solver. The MPI/OpenMP/CUDA parallel framework 

base on GPU context technique can support a large scale 

of parallelism, which can fully exploit the computing 

power of current distributed CPU/GPU clusters. The out-

of-GPU memory scheme overcomes the GPU memory 

limitation is to utilize both the CPU and GPU memory, 

which offering a possibility of handling complex 

electrically large objects. 
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