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Abstract: The aim of this paper is to present different
error estimates to improve accuracy in limesr and
nonlinear self- adaptive finite element field calculation.
The first estimator is based on the polynomial theory, the
seconid one makes an estimation of the flux density
divergence, fhe third one is linked to a magnetomotive
force associated to elements sides, and the fourth one is
based on the use of the bilinear element. All methods
were implementied in oor software named LMAG2D
developed at “Escola Politécnica da Universidade de Sdo
Paunlo”, Brazl.

1. INTRODUCTION

The design of an electromagnetic device has always
been a hard task for both electrical and electronic
engineers. The development of the Finite Element
Method (FEM) and Computer Aided Design (CAD)
techniques have changed several topics associated to
the design of electromapnetic devices.

The Finite Element Method is reliable when the
domain is wisely divided and self-adaptive schemes can
greatly improve the quality of the mesh.

Self adaptive schemes 1] provide an adequate mesh
to analyze the electromagnetic phenomena. The
solution of the problem is more accurate, therefore

more  reliable.  Consequently some relevant
electromagnetic quantities such as flux, force and
torque become more reliable.

A self-adaptive scheme is always based on an error
evaluation. Several methods have been proposed to
estimate the error on finite element analysis. Usually,
the error estimators are based either on complementary
methods, or on approximated estimation using ficld
derivatives [2][3].

In this work, four estimators are proposed. The first
one based on the polynomial theory is a modification of
the estimator proposed by Fernandes et al [3]. This

error evaluation was modified so as to allow for non-
homogeneous domains. The second method is
associated to a local error estimator and makes an
evaluation of the flux density divergence for every
element within the mesh. The third one is based on the
inter-element discomtinuity of the magnetic field
intensity, when the magnetic potential vector is used.
In the fourth method, the error estimation is based on
the difference of two umlike fields: one is calculated
with first order finite element triangular calculation
and the other with a bilinear quadrilateral element.

II THE ERROR ESTIMATORS

All estimators here proposed are associated to a
bidimensional magnetostatic problem linked to a finite
element model, where the magnetic vector potential is
applied.

The first error estimator is based on polynomial
interpolation theory. According to Dhatt and Touzot[4],
for first order friangular element, the error can be
written as:
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where C, is a constant
A is the magnetic vector potential
1 is the element biggest side

The procedure for caiculating the second
derivative of the potential is similar to the one
proposed by Fernandes [3], .e.,

Step 1: The flux density in each vertex is the
average of the flux density vectors in triangles that
contain this vertex.

In this calculation the triangles must have the same
magnetic property; thus, in non-homogeneous
problems, the adopted procedure to evaluate the error

'is based on a multi-valued flux density at the interfaces.



This change makes Fernandes’s error estimation more
reliable.

Step 2: The flux density calculated in Step 1 leads
the calculation of the second potential derivative by the
use of the following hypothesis: the flux density is a
linear interpolation of the nodal flux deumsity. This
hypothesis is assumed only for error calculation.

The second proposed error estimator is based on the
divergence of the flux density. Firstly, the flux density
vector is calculated in each node as the average of the
flux density vectors in triangles that contain the vertex.
The same procedure has already been adopted in the
first error estimator (Step 1). To calculate the flux
density vector within the triangles, the same shape
functions applied to the magnetic vector potential were
used. The determination of this vector divergence can
be, in the whole domain, assumed as an evaluation for
the solution error.
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Both estimators use the same flux density nodal
evaluation, whereas the error evaluation reached by
each method is different.

The third proposed method calculates the tangential
magnetic field vector discontinuity on the sides of the
triangles. Such discontinuity is associated to the
solution error when the magnetic potential vector is
used.

The discontinuity is only due to the numerical
solution and it is linked to a magnetomotive force on
the element side, because around this side Ampere's
law is not satisfied by the numerical solution.Thus, in
each triangle side, there is a2 magnetomotive force (J12),
which can be understood as & "side error” evaluation:
Ji» = Hy=Hellp (3}

On each side of the mesh, Equation (3) shows that
side error (J;) 1is associated to the jump of the
tangential component of the magnetic intensity,
muitiplied by the side length.

In this work, the error is associated to the nodes
because this procedure does not require significant
changes in the main code, or in the data structure. The

nodal error can be written as:
NV
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Where: NV is the total number of vertex and n; is the
total number of the sides that contain the node i.

So the nodal etror ¢; is the arithmetic mean of all
side errors associated to the node.

The fourth method to evaluate the error is based on
the use of a bilinear element. In a first order triangular
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mesh, 2 set of quadrilateral elements can be build
(Fig.1). Each element has three neighbor triangles,
from which it is possible to have three different
quadrilateral elements built. If however, two neighbor
triangles have different magnetic proprieties, the
quadrilateral can not be created, for the quadrilateral
element must have only one magnetic propriety.
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Figure 1 Three neighbor triangies

The local error can be written as:
e= ﬂﬁ -B Jde )
Q

where Bis the flux density, calculated by the finite
element method, using a first order triangular element;

B, is the flux density, calculated using quadrilateral

clements and ) is one of the quadrilateral elements,

Thus, in the general case, a set of three error values
can be computed for each trianguiar element. The local
error in each element is assumed as being the highest
value in the set.

For #ll proposed estimators, the applied adaptive
refinement is a combination of a bisection, a Delaunay
triangulation and an optimization of the nodal
coordinates.

I TEST CASES

The efficacy of an electromagnetic field solution with
z self-adaptive procedure can be measured either in
cases where the analytic solution is known, or in
problems where the numeric solution has been
exhaustively tested by an electromagnetic field solution
soffware, or in cases where experimental results are
available.

Three test cases were then analyzed. The first one
has an analytical sohmion through conformal
transformations. It consists on the L-shaped region as
can be seen in Figure 2.



Figure 2- Geometry and Field Distribution for the First Problem

Simkin[5] has proposed a problem, where the main
objective is the force computation in an iron part. The
geometry of the problem is shown in Figure 3. Lowther
6] suggests solutions to this problems.
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Figure 3 Geometry for the sccond case

The third case is a 75 kW permanent-magnet electric
motor, which has a nonlinear behavior. This case was
divided into three different subcases: an open-circuit
test, a test to evaluate the inductance per phase, and one
on-load condition test.

IV RESULTS

The indicators showed a satisfactory performance,
concerning precision and convergence ratio related to
local and global quantities for the analyzed cases.

Figure 4 shows the energy convergence of the first
case for the first three adaptive proposed procedures.
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They are also compared to a regular mesh in figure 4
and all estimators have a high convergence ratio and
provide a minimum of energy with fewer nodes than
the regular method.
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Figure 4 Energy Convergence

To calculate the precision on the magnetic vector
potential along XY segment (Figure 2), analytical and
numerical solutions are compared, and the deviation
between them both was computed. Figure 5 shows the
deviation on the magnetic vector potential along this
segment, when the estimator based on the divergence is
applied. High errors were reached only on the vicinity
of the singular point (X) {7].
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Figure 5 Error on the Potential — Case 1



In the second case, more complex than the first one,
satisfactory results were obtained for the calculated
force, applying the virtual work principle. Figure 6
shows the field distribution, and Figure 7 shows the
obtained mesh when the third method was used.
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Figure 6 Field Distribution for the Second Case

_/

[} 3 . Iy

Figure 7 Mesh for the second problem

Table 1 shows some important results linked to the
second case.
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TABLE 1 COMPARATIVE RESULTS FOR THE SECOND CASE:
FORCE CALCULATION

Method  Force (IN)  Nodes  Lowther's Result (N)  Tterations
1 6170 3010 8
2 6280 2892 6146 [
3 6130 1445 7
4 6158 2215 [

High accuracy was obtained by methods 1, 3 and 4
because these error estimators identify more elements
for refinement on the corners of the iron part and on
the conductors.

According to Simkin [5], a refinement on the corners
of the ferromagnetic part is the key to achieve a high
precision force calculation.

The deviation of method 2 is the highest because
the iron-air interface is well divided in triangles, but
the conductors and the surrounding air around the part
do not have a proper discretization.

The third case presents a nonlinear behavior of the
ferromagnetic material. The self-adaptive scheme
provides a good mesh and good results, compared to
the prototype, for the four error estimators proposed.

Figure 8 shows the field distribution for the PM
motor at no-load, using method 1. The self-adaptive
scheme provides a minimization of the errors and
symmetry can be observed in the figure,
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Figure 8 Ficld Distribution for the PM Motor at no-load

An electromotive force at no-load in an auxiliary
winding was calculated and compared to the
experimental data and a good agreement was reached.
Table 2 shows, for the four estimators, the main data
for the self-adaptive processes.



TABLE 2 COMPARATIVE RESULTS: THIRD CASE --EMF.
Tabile 3 shows some relevant data related to the self-

Method N‘;“;‘Z“ Tterations C":"::;“’d M:":me'ed adaptive processes, using the four proposed estimators.
vy V) A good agreement between experimental and calculated
1 1276 4 342 data was achieved.
2 1779 3 340 3.61
3 769 6 341 TABLE 3 COMPARATIVE RESULTS — INDUCTANCE
4 1651 4 3.37 CALCULATION
The calculation of the inductance per phase was also  Method Numberof [terations  Calculated Measured
performed, and the end-winding inductance was Nodes "’d(“m“ﬁ;‘“ '“"(“m"]“:;m
considered using analytical methods. Figure 9 shows I 1380 3 712
the mesh obtained and Figure 10 shows the field 2 2015 3 717 709
distribution, using method 2. There is a high density 3 2369 3 724
mesh around the energized conductor and also in the 4 1043 4 7.13

air-gap, because both regions have high density energy. .
A calculation of an on-load condition of the PM-

TP motor was performed. Figure 11 shows the obtained
) [ mesh, and Figure 12 shows the field distribution when
] the fourth method was used,

Figure 11 Mesh for the third problem: FM-motor on-load

- e
Figure 10 Field Distribution: inductance calculation
Figure 12 Field distribution for the third problem: PM motor on load
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Table 4 shows a comparison between the
experimental and computed torque for the four
proposed estimators. A good agreement was reached
for all methods because the air gap was wisely
subdivided in elements. The Finite Element Method
can model accurately the armature reaction and the
developed torque, only if the air-gap is wisely
subdivided.

TABLE 4 COMPARATIVE RESULTS — TORQUE CALCULATION

Method Nodes Computed Experimental Iterations
Resuilt Result
(N.m) (N.m)
1 1075 320 4
2 1809 329 328 3
3 1961 332 3
4 1823 327 4
V CONCLUSIONS

This paper analyzes four error estimators. The first
and the fourth error estimators provide adequate
element mesh to analyze electromagnetic field
phenomena,

Relevant to say that the first error estimator implies
in shorter CPU times than the fourth one due, to its
simplicity. The use of a multi-value density flux at
interfaces made it more effective in calculation with
heterogeneous media. However, the fourth error
estimator is also reliable.
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The second and the third error estimator produce a
reability that is lower if compared to the other two
estimators. Even though, the obtained results show
better accuracy for most analyzed cases. The CPU time
for this estimators is usually shorter.

Resulis show that a self-adaptive scheme is a
powerful tool to improve accuracy in a finite element
field calculation, even with nonlinear cases,
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