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Abstract ─ A new convolutional perfectly matched layer 

(CPML) for the fourth-order one-step leapfrog hybrid 

implicit explicit finite-difference time-domain (HIE-

FDTD) method for the TE case has been proposed in this 

paper. When the time step size satisfies with the time 

stability condition, the maximum reflection error of the 

proposed method is below -72dB, which demonstrates 

good absorbing performance of the CPML method. To 

verify the accuracy and efficiency of the proposed 

method, we compare the results of the traditional FDTD 

method and the HIE-FDTD method. Numerical examples 

demonstrate that the proposed method consumes about 

60.13% less CPU time than the traditional FDTD method 

and 41.60% less CPU time than the existing HIE-FDTD 

method.  

 

Index Terms ─ Accuracy, computational efficiency, 

convolutional perfectly matched layer (CPML), fourth 

order one-step leapfrog, hybrid implicit and explicit-

FDTD (HIE-FDTD), relative reflection error. 

 

I. INTRODUCTION 
The finite-difference time-domain (FDTD) [1] 

method has been proven to be an effective means that 

provides accurate predictions of field behaviours for 

varieties of electromagnetic iteration problems. However, 

as it is based on an explicit finite-difference algorithm, 

the Courant-Friedrich-Levy (CFL) condition [2] must be 

satisfied when this method is used. In order to remove 

the CFL limit, many improved methods have been 

developed.  

In 1999, the alternating direction implicit FDTD 

(ADI-FDTD) method was proposed in [3-5]. The time-

step size in the ADI-FDTD technique was no longer 

constrained by the CFL limit and could be any value 

theoretically. However, the accuracy of the ADI-FDTD 

method is constrained by the numerical dispersion [6] 

and the splitting error associated with the square of the 

time step size [7-8]. Besides, it must solve six tridiagonal 

matrices and six explicit updates for one whole   

update cycle, which makes the ADI-FDTD method 

computationally inefficient. In 2005, a locally-one-

dimension FDTD (LOD-FDTD) method was proposed 

in [9], [10]. The LOD-FDTD method requires less 

arithmetic operations than the ADI-FDTD method while 

providing comparable accuracy [10]. In 2006, a hybrid 

implicit and explicit-FDTD (HIE-FDTD) method was 

proposed in [11-14]. The time-step size of the HIE-

FDTD method is determined by two space discretization. 

The HIE-FDTD method is weakly conditionally stable 

and is extremely useful for problems with very fine 

structures in one direction. Afterwards, a one-step 

leapfrog HIE-FDTD scheme has been proposed in [15] 

with its field updated in the same manner as that of the 

traditional FDTD method. Recently, a fourth-order 

leapfrog HIE-FDTD method was proposed in [16]. The 

method not only has the second-order accurate in time 

and the fourth-order accurate in space, but also has the 

one-step leapfrog schemes. Therefore, the method spend 

much less computational time and got better accuracy. 

However, up to now, such an efficient fourth-order  

one-step leapfrog HIE-FDTD method with absorbing 

boundary conditions (ABCs) hasn’t been studied 

systematically.  

In this paper a new convolutional perfectly matched 

layer (CPML) for the fourth-order one-step leapfrog 

HIE-FDTD method [17] is proposed. The time stability 

of the proposed method is 6 7t x c    [18]. Numerical 

examples demonstrate that the proposed method has very 

high accuracy and efficiency. What’s more, when the 

time step size satisfies with the time stability condition, 

the maximum reflection error of the proposed method  

is below -72dB, which demonstrates good absorbing 

performance of the CPML method. For simplicity, the 

two-dimensional (2-D) fourth-order one-step leapfrog 

HIE-CPML update equations are discussed in this paper. 

The formulations for a 3-D fourth-order HIE-FDTD 

method can be developed following a similar procedure. 

The organization of this paper is as follows. In 

Section 2, the formulations of proposed algorithm    

are presented. The absorbing performance with CPML 

of proposed method is presented in Section 3. The 

numerical results applied to validate the efficiency and 

the accuracy of the proposed method, the traditional 
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FDTD method and the existing HIE-FDTD method are 

presented in Section 4.  
 

II. FORMULATION 
The numerical formulations of the two-dimensional 

fourth-order one-step leapfrog HIE-FDTD method 

proposed in [16] are presented as follows: 
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The CPML [18] is an efficient implementation of 

the complex frequency-shifted (CFS) constitutive PML 

parameters, originally proposed by Kuzuoglu and Mittra 

to introduce a strictly causal form of the PML. The 

modified Maxwell’s equations in the CPML region can 

be written as [18-19]: 
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where   is the auxiliary term related to the field 

quantities in the CPML, and 
xk , 

yk  are nonnegative 

real numbers, respectively.  

Here, 
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Here   and a
 are assumed to be nonnegative real 

number and 0  is the position of the CPML layer. d and 

max
  are the thickness of the CPML in x and y directions 

and the maximum conductivity, respectively. m and 


  

are the cell size and the order of polynomial scaling, 

respectively. For these simulations, the value of m is 

chosen as 4. 

By applying the CPML layer to (1)-(3), a set of time 

marching equations is derived and expressed as follows: 
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Substituting (5-3) into (5-1), we have: 
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By substituting (6-3) and (8) into (6-1), the updating 

equation for n

xE  is obtained as follows: 
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In Eq. (9), it often uses the finite difference to 

approximate the spatial derivate [20], [21]. For example: 
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where  h  can be obtained as follows [22]: 

  
    

   

2

2

2 -1 !!1

2 -2-2h !! 2 2h !!1
2

h
H

h
H H

h
h





 

 
 

. 

When H is equal to 2, the order of the algorithm is 

equal to 4. According to the definition of the constant

 h  and by substituting (10) into (9), then introducing 

the auxiliary variable e and h as indicated in [23], i.e., 

 +1 2 +1 2 -1 2= -n n n

m m me E E  . . . m=x, y., 

 +1 +1= -n n n

m m me H H  . . . m=x, y.. 

The final updating equations of +1 2n

xE  of the 

proposed method can be finally obtained as follows, 
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The other updating equations of the proposed method 

can be obtained similarly and are not shown here for 

simplicity.  
 

III. ABSORBING PERFORMANCE  
In order to study the absorbing performance of the 

CPML absorbing boundary, the relative reflection error 

of the fourth-order one-step leapfrog HIE-CPML method 

is discussed. A simulation of sinusoidally modulated 

Gaussian pulse as an input electric current profile is 

studied. The time dependence of the excitation function 

is as follows: 
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where 
0f , 0t  and   are constants. Here, we choose 

0 5 ,f GHz and 10

0 6 10 .t s     This excitation source 

is used throughout the paper A 3.0GHz i5 professor PC 

with 8GHz memory is used to calculate the results. A In 

the all simulation, the relative reflection error is defined 

as follows:  

 ,
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where ( )yE t  is the time-dependent electric field at the 

observation point calculated by using the proposed 

method truncated by the CPML. 
, ( )y refE t  represents  

the reference electric field and is measured at the same 

observation point by extending the dimensions of the 

computation domain to 500  500 grids so that the 

reflected wave does not return at the observation point 

before the simulation was not terminated. It can almost 

avoid any possible reflection effect from boundaries. The 

CPML constructive parameters for these simulations are

max
12k  , 0.07   [24].  

The relation between the relative reflection errors of 

the proposed method and the variable   is presented 

in Fig.1. The spatial step sizes in this simulation are 

0.006
x

   and 0.0006
y

  . The time step size of 

the proposed method is 6 7 17.14t x c ps    . It can 

be seen from the Fig. 1 that the proposed method with 

CPML absorbing boundary has different relative 

reflection errors as   takes different values. When the 

value of   is larger than 0.07, the maximum relative 

reflection error is less than -72dB. However, when   

the value of   is less than 0.07, the relative errors 

deteriorate so that the maximum relative reflection error 

would reach to -51dB. Therefore, the optimal value    

of   is equal to 0.07. With this value, the relative 

reflection error of the HIE-FDTD method is below     

-72.52dB in the entire simulation history. 
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Fig. 1. The relation between the relative reflection errors 

and the order of the polynomial  . 

 

In order to present relations between the relative 

reflection error and the time step size of the proposed 

method, the variation of the relative reflection error with 

respect to different CFLN values is presented in Fig. 2. 

Here, the value of the   is equal to 0.07. Figure 2 

shows that as the increase of the CFLN, the relative 

reflection error of the proposed method increases 

gradually. Even when CFLN takes its maximum value, 

namely, CFLN=8.657, the relative reflection error still 

can reach to -51.45dB, which shows excellent absorbing 

performance of the CPML. 
 

 
 

Fig. 2. The relation between the relative reflection errors 

and the CFLN value. 

 

Next, it is instructive to observe the relation between 

the maximum reflection error and the CPML constructive 

parameters 
maxk , 

max
 . Figure 3 illustrates the contour 

curves of the maximum relative reflection error against 

maxk , 
max

  at the observation point. It is demonstrated 

from the Fig. 3 that the best absorbing performance can 

be achieved in a larger range by selected the values of 

maxk  and 
max

  effectively. That makes it easy to predict 

the optimal values. Obviously, when 
max 12k   and 

max 1,opt    the maximum errors of the proposed 

method can reach to -72dB. 

 

 
 

Fig. 3. The maximum relative reflection error at 

observation point as a function. 

 

IV. ACCURACY AND EFFICIENCY  
To validate the accuracy and efficiency of presented 

algorithm, a simulation of sinusoidally modulated 

Gaussian pulse as an input electric current profile is 

studied. A 2-D computational domain with the dimension 

84 8.4cm cm  is shown in Fig. 4. The computational 

domain is free space and is discretized with 0.006
x

   

and 0.0006
y

   respectively. The total lattice dimension 

is 140 140.  The current source is placed at the centre of 

the domain and the observation point 1p  is placed 30cm 

away from the source. Ten cell-thick CPML layers are 

used to terminate the computational domain [23]. 

Applied the traditional FDTD method, the HIE-

FDTD method [24-25] and the proposed method to 

compute the field components at the observation point, 

the results are shown in Fig. 5. The time-step sizes in  

the three methods are  2 21 1 1 1.99 ,t c x y ps     

 21 1 20.10t c x ps    and 6 7 17.14 ,t x c ps     

respectively. They are the maximum time-step size of 

each method to satisfy the time stability condition. It can 

be seen from the Fig. 5 that the component calculated by 
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using the proposed method agrees very well with the 

results calculated by using the traditional FDTD method 

and the HIE-FDTD method, which demonstrates the 

proposed method has a high accuracy. 

 

 
 

Fig. 4. Free space truncated by CPML. 

 

In order to study the efficiency of the proposed 

method, more simulations are presented here. The time-

step size of the traditional FDTD method is chosen as 

1.990t ps  . In the HIE-FDTD method, they are chosen 

as 1.99,3.98,7.96,17.14t ps   and in the proposed 

method, they are also 1.99,3.98,7.96,17.14t ps  . To 

complete these simulations, the computational times of 

these methods are presented in Table 1. The numbers of 

the computational iterations of each method are also 

presented in the Table 1.  

 

 
 

Fig. 5. The electric field values at 1p  calculated by the 

FDTD algorithm, the existing HIE-FDTD algorithm and 

the proposed HIE-FDTD algorithm. 

 

Table 1: Computer costs of the FDTD algorithm, the HIE-FDTD algorithm and the proposed method 

t (ps) 1.99=1.99*1 3.98=1.99*2 7.96=1.99*4 17.14=1.99*8.6 

CFLN 1 2 4 8.6 

The traditional 

FDTD 

Number of iterations 2000    

CPU time (s) 29.1    

The HIE-FDTD 
Number of iterations 2000 1000 500 232 

CPU time (s) 171.0 84.9 42.7 19.8 

The proposed 

method 

Number of iterations 2000 1000 500 232 

CPU time (s) 101.3 50.2 25.1 11.6 

As shown in Table 1, when CFLN is 8.6, the proposed 

method consumes about 60.13% less CPU time than the 

traditional FDTD method. The main reason is as follows: 

the time-step size of the proposed method is 8.6 times 

larger than that of the traditional FDTD method. 

Therefore, the iteration number is much smaller for the 

same simulated time history. Besides, compared with the 

HIE-FDTD method, the proposed method saves about 

41.60% CPU time, although the time step size in these 

two methods are same. This is because the formulation 

of the proposed method is much conciser than the HIE-

FDTD method. It means even the proposed method  

uses same time-step size as the HIE-FDTD method, its 

computational time considerably reduced compared with 

that of the HIE-FDTD method. Note that if CFLN=1 is 

used, the proposed method would have no advantages 

over the traditional FDTD method. As the computational 

time of each iteration is longer because of additional 

efforts needed for solving the tri-diagonal linear system 

in proposed method. 

VI. CONCLUSION 

This paper introduces the CPML absorbing 

boundary conditions theories into the fourth-order one-

step leapfrog HIE-FDTD algorithm. It is found that the 

technique is weakly conditionally stable and supports 

time step size greater than the CFL limit. Numerical 

simulations show that the maximum reflection error as 

low as -72 dB can be achieved by selecting 
max

12k   

and max 1.0opt   . It demonstrates the proposed method 

with CPML has good absorbing performance. Besides, 

the field components calculated by using the proposed 

method agree very well with the result calculated by 

using the traditional FDTD method and the HIE-FDTD 

method, which indicates that the proposed method has 

excellent calculation accuracy and low computational 

error. What’s more, the computer cost of the proposed 

algorithm is much less than the traditional FDTD 

algorithm and the HIE-FDTD method. It means the 

proposed algorithm has higher efficiency.  
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