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Abstract ─ An effective probe compensated near-field–

far-field (NF–FF) transformation with planar spiral 

scanning, using a minimum number of NF data, has 

been experimentally validated. It allows a remarkable 

measurement time saving, due to the continuous 

movements of the positioning systems and to the 

reduced number of needed NF data. Such a technique is 

based on a nonredundant sampling representation of the 

voltage acquired by the probe, obtained by using the 

theoretical foundations of the NF–FF transformations 

with spiral scans for quasi-spherical antennas. Then, the 

NF data needed by the plane-rectangular NF–FF 

transformation are efficiently recovered from those 

acquired along the spiral, via an optimal sampling 

interpolation formula. 

 

Index Terms ─ Antenna measurements, near-field – 

far-field transformation techniques, nonredundant 

sampling representations, planar spiral scanning. 

 

I. INTRODUCTION 
As well-known, near-field–far-field (NF–FF) 

transformation techniques [1] are widely used to 

accurately reconstruct the far field radiated by 

electrically large antennas from NF measurements 

carried out in an anechoic chamber. Among these 

techniques, those adopting the planar scannings [2-6] 

are particularly suitable for high gain antennas radiating 

pencil beam patterns. Nowadays, one of the hottest 

topics concerning the NF–FF transformations is the 

reduction of the measurement time, that is currently 

very much greater than the computational one. To this 

end, the nonredundant sampling representations of 

electromagnetic (EM) fields [7, 8] have been properly 

used in [3, 4] and [6] to remarkably reduce the number 

of NF measurements in the plane-rectangular [2]  

and plane-polar scanning [5], respectively. Another 

convenient way to reduce the measurement time is, as 

suggested in [9], the use of NF–FF transformations 

employing the planar spiral scanning [9-14], which 

makes faster the NF data acquisition, since it is 

executed on fly through a continuous linear movement 

of the probe and a synchronized rotational one of the 

antenna under test (AUT). Among them, those [11-14] 

relying on the nonredundant sampling representations 

of EM fields are even more effective from the 

measurement time reduction point of view, due to the 

lower number of NF data and spiral turns. In particular, 

the two-dimensional nonredundant representation for 

the voltage measured by the probe on the plane has 

been obtained by assuming the AUT as enclosed in the 

smallest sphere and oblate ellipsoid containing it in [11, 

12] and [13, 14], respectively. In both the cases, 

optimal sampling interpolation (OSI) expansions are 

used to efficiently recover the data needed by the 

classical plane-rectangular NF–FF transformation [2] 

from the nonredundant ones collected along the spiral. 

Recently, NF–FF transformation techniques with 

helicoidal and spherical spiral scannings have been also 

proposed. The interested reader can refer to [15] for a 

complete bibliography. 

The aim of this paper is to provide the experimental 

assessment of the NF–FF transformation with planar 

spiral scanning [11] using a ball for modelling 

volumetric (i.e., quasi-spherical) antennas. 

 

II. NONREDUNDANT PROBE VOLTAGE 
REPRESENTATION ON A PLANE 

Let us consider a quasi-spherical AUT, enclosed in 

the smallest sphere of radius a able to contain it, and a 

nondirective probe scanning a spiral lying on a plane at a 

distance d from the AUT centre. Moreover, let us adopt 

the spherical coordinate system ( , , )r  
 
to denote an 

observation point P (Fig. 1). The voltage measured by 

such a probe has the same effective spatial bandwidth of 

the AUT field and, hence, the nonredundant sampling 

representations of EM fields [7] can be applied to it. 

Accordingly, to get an effective voltage representation 

along a curve C lying on the plane, it is convenient to 

adopt a proper parameter  for describing C and to 

introduce the “reduced voltage” ( ) V   j ( )( ) eV   , 

where 
 
 ()  is a proper phase function and 

 
 
V (
)  is the 

voltage 
 
V  or 

 
V  measured by the probe or by the 

rotated probe, 
 
(,)  being the polar coordinates on the 
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plane. The bandlimitation error, occurring when ( )V   is 

approximated by a bandlimited function, is negligible as 

the bandwidth exceeds a critical value 
 
W  [7] and, thus, 

it can be controlled by choosing the bandwidth equal to 

  
 'W , 

 
 ' 1 being the enlargement bandwidth factor. 

 

 
 

Fig. 1. Planar spiral scanning. 

 

According to the theoretical results on the NF–FF 

transformations with spiral scannings for quasi-spherical 

antennas [12], the two-dimensional OSI expansion,  

for reconstructing the voltage on the plane from a 

nonredundant number of its samples collected along the 

spiral, can be rigorously obtained by choosing the spiral 

in such a way that its pitch be equal to the sample 

spacing needed for the interpolation along a radial line 

and developing a nonredundant sampling representation 

along the spiral. The bandwidth, the parameter relevant 

to a radial line, and the related phase function are [7, 

12]: 

 
 
W  a ;                    , (1) 

 
  
   r2  a2 a cos1 a r , (2) 

 being the free-space wavenumber. 

The sample spacing for the radial line interpolation 

and, as a consequence, the pitch of the spiral is then 

  
  2 (2N"1), where 

  
N" Int (N ')1, Int(x) 

denotes the integer part of x, 
 
 
N '  Int(

 'a)1, and  

 > 1 is an oversampling factor, which controls the 

truncation error [7]. Accordingly, the equations of the 

spiral are: 

 

tan cos cos
tan sin sin

 
 

 

x d
y d
z d

   
    , (3) 

where  is the angular parameter describing the spiral. 

Moreover, the condition on the spiral pitch implies that 

 
  k , with 

  
k 1 (2N"1)

 
[12]. It is noteworthy that 

, unlike the zenithal angle , can take also negative 

values and that, when the spiral crosses the pole, the 

azimuthal angle  has a discontinuity jump of π, while 

the spiral angle  is continuous. Note that such a spiral 

can be viewed as obtained by radially projecting on the 

plane a proper spiral wrapping the sphere modelling the 

AUT. 

As regards the nonredundant sampling representation 

along the spiral, it has been rigorously shown, in [11] 

for the planar spiral and in [12] for a spiral wrapping a 

quite arbitrary rotational surface, that the expressions of 

the phase function  and of the parameter  are: 

   ;     
2 2

0

sin ' d ' 
a

k k
W






   . (4) 

Accordingly, the parameter  is 
 
 

 / W  times the 

curvilinear abscissa of the projecting point lying on the 

spiral that wraps the modelling sphere. The bandwidth 

W  can be determined in such a way that the angle-like 

parameter  covers a 2π range when the whole projecting 

spiral on the sphere is described. As a consequence, 

 

  

W 
a


k 2 sin2k' d'

0

(2N"1)

 . (5) 

In light of the above results, the reduced voltage at 

the point P on the radial line at  can be reconstructed by 

the following OSI expansion [11, 12]: 

       

0

0 1

", ,



  

  
n q

n n nN

n n q

NV V D        , (6) 

wherein 2q is the number of the retained intermediate 

samples ( )nV  , namely, the reduced voltage values at 

the intersection points between the spiral and the radial 

line through P,  0 0Int ( ) /  n    ,  
 N  N" N '

, 

 
  q, and 

 
  
n n()  k n 0  n . (7) 

Moreover, 

  
 

"
sin (2 " 1) 2  

 (2 " 1) sin ( 2)





N

N
D

N





, (8) 

 
  

 

2

2

1 2 cos( /2) cos( /2)
,

1 2 cos ( /2)

 
 

 

N
N

N

T

T

 
 


, (9) 

are the Dirichlet and Tschebyscheff sampling functions 

[7], where 
  
TN ()

 
is the Tschebyscheff polynomial of 

degree N. 

The following OSI expansion along the spiral [11, 

12] allows one to recover the intermediate samples: 

       

0

0 1

"( ) ,



  

  
m p

n m m mM

m m p

MV V D        ,(10) 

where  0 Int ( )/ nm    , 2p is the number of the 

retained samples,  
 M  M" M '

, 
 
  p , and 

 2 (2 " 1)    m m m M  , (11) 

with " Int[ '] 1 M M  and ' Int[ ] 1' M W . 

Since small variations of  correspond to large 

changes of  in the neighbourhood of the pole (   0 ), it 

is necessary to properly increase the factor 
 
 '  to avoid  

a significant growth of the bandlimitation error, when 

interpolating the voltage in this zone [11, 12]. 

It is so possible to accurately recover the voltages 

 
V  and 

 
V , acquired by the probe and rotated probe, at 
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the points required by the classical plane-rectangular 

NF–FF transformation [2]. Unfortunately, the probe 

corrected formulas in [2] (whose expressions in the here 

considered reference system can be found in [11]) are 

valid only if the probe maintains its orientation with 

respect to the AUT and this requires its co-rotation with 

it. To avoid such a co-rotation, a probe exhibiting only 

a first-order azimuthal dependence in its radiated far 

field can be used. In fact, in such a case, the voltages 

 
VV  and 

 
VH  (acquired by the probe and rotated probe 

with co-rotation) can be determined from 
 
V  and 

 
V  

via the relations: 

 
 

 
VV V

 cos V sin ; 
 

 
VH V

 sin V cos . (12) 

 

III. EXPERIMENTAL ASSESSMENT 
In this section, some experimental results assessing 

the effectiveness of the described NF–FF transformation 

are shown. The tests have been performed in the 

anechoic chamber of the Antenna Characterization Lab 

of the University of Salerno, which is equipped with a 

plane-polar NF facility, besides the cylindrical and 

spherical ones. The amplitude and phase measurements 

are performed by using a vector network analyzer. The 

planar scanning is accomplished by mounting the AUT 

on a roll positioner and anchoring the probe (an  

open-ended WR90 rectangular waveguide) to a vertical 

scanner. The antenna employed in the experimental 

tests is a H-plane monopulse antenna, working in the 

sum mode at 10 GHz, located in the plane z = 0, and 

built by using a hybrid Tee and two pyramidal horns, 

whose apertures ( 8.96.8  cm sized) are at a distance 

of 26 cm between their centers. It has been modelled by 

a ball of radius a = 18.0 cm. The NF data are acquired 

along a spiral covering a circular zone of radius 110 cm 

on a plane at distance d = 50.5 cm from the AUT. The 

amplitudes of the recovered voltages 
 
V  and 

 
V  

relevant to the radial lines at  = 0° and  = 30° are 

compared in Figs. 2 and 3 with those directly measured. 

For completeness, the comparison between the recovered 

phase of 
 
V  on the radial line at  = 0° and the directly 

measured one is also shown in Fig. 4. As can be  

seen, the reconstructions are very good, save for the  

zones characterized by very low voltage levels. These 

reconstructions have been obtained by choosing χ = 1.20 

and p = q = 7 to ensure a truncation error smaller than 

the measurement one [11]. Moreover, to make the 

aliasing error negligible,  
 '  has been chosen equal to 

1.35, save for the zone of the spiral determined by the 

24 samples centred on the pole, wherein it has been 

increased in such a way that the sample spacing is 

reduced by a factor 9. 

At last, the FF patterns in the principal planes E 

and H, reconstructed from the NF data acquired along 

the spiral, are compared in Figs. 5 and 6 with those 

recovered via the classical cylindrical NF–FF trans-

formation. As can be seen, a very good agreement results. 

Note that the number of used spiral samples is 

1 767 (1 575 regular + 192 extra samples) much smaller 

than those 21 609 and 33 581 needed by the classical 

plane-rectangular [2] and the Rahmat-Samii’s plane-

polar [5] NF–FF transformations, respectively. 

 
 

Fig. 2. Amplitudes of 
 
V  and 

 
V  on the radial line at 

 = 0°. Solid line: measured. Dashes: reconstructed 

from the NF data acquired along a spiral. 

 
 

Fig. 3. Amplitudes of 
 
V  and 

 
V  on the radial line at 

 = 30°. Solid line: measured. Dashes: reconstructed 

from the NF data acquired along a spiral. 

 
 

Fig. 4. Phase of 
 
V  on the radial line at  = 0°. Solid 

line: measured. Dashes: reconstructed from the NF data 

acquired along a spiral. 
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Fig. 5. E-plane pattern. Solid line: reconstructed from 

cylindrical NF data. Dashes: reconstructed from the NF 

data acquired along a spiral. 
 

 
 

Fig. 6. H-plane pattern. Solid line: reconstructed from 

cylindrical NF data. Dashes: reconstructed from the NF 

data acquired along a spiral. 

 

IV. CONCLUSION 
An experimental validation of the described NF–FF 

transformation with planar spiral scan has been provided. 

The very good agreement found in the NF reconstructions, 

as well as that resulting from the comparison between the 

recovered FF patterns and those obtained by employing 

the cylindrical scanning, have fully confirmed its 

effectiveness also from the experimental viewpoint. 
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