
Low Rank Matrix Algebra

for the Method of Moments1

John Shaeffer

Matrix Compression Technologies, LLC

Marietta, Georgia
john@shaeffer.com

Abstract—This tutorial presents the use of low rank Rk

matrix block formulations for advancing the problem size

capability N of the Method of Moments full wave approach

to solving Maxwell’s integral equations. When MOM

unknowns are spatially grouped, the group-group

interaction matrix blocks become low rank for electrically

large problems. A very significant advantage of this

Rk property along with use of the Adaptive Cross

Approximation leads to dramatic reduction in memory

storage and in operations count. While early Rk approaches

focused on iterative approaches, this work shows how Rk

methods can be applied to direct solve LU factorization

approaches and, for scattering problems, Rk methods can

be used to compute the full polarization scattering matrix.

Keywords—ACA, Direct Factor Method of Moments,

electromagnetic scattering, Rk math.

I. BACKGROUND

Full wave solvers for Maxwell’s integral equations are the

much-preferred approach when they can be implemented. And

direct factor rather than iterative solutions avoids the well-

known failures of the latter. However, the direct factor

computational cost for N unknowns is immense: N2 for matrix

storage, N3 for matrix LU factorization and N2 for each RHS

excitation solution.

Researchers in the last 20-30 years have improved on this

situation by recognizing that MOM system matrices, when

unknowns are spatially grouped, lead to low rank blocks within

the overall system matrix. Early researchers developed iterative

solvers based on analytic Green’s Function expansions (FMM

and MLFMM). While these approaches significantly increased

problem sizes they suffered from several problems: 1) They

required special development of analytical Green’s functions;

2) They were not well adapted for multiple RHS problems

1 Early portions of this work were funded by the late Mrs. Arlene K Shaeffer. NASA funded validation and development of SIE/VIE

capability as well the multiple SIE boundary condition capability.

where the iterative scheme has to restart fresh for each new

RHS vector which limits FMM and MLFMM usefulness for

backscatter problems with many RHS’s; 3) They often have

slow and no convergence for the iterative solution for problems

involving significant interactions; and 4) They often require

matrix preconditioners.

More recently we have seen the development of the

Adaptive Cross Approximation (ACA) for computing the low

rank UV approximation to system matrix blocks, based on

spatial grouping of unknowns. Whole new approaches to

solving MOM system matrices has resulted.This includes the

author’s development in 2006 of Mercury MOM, the first code

to LU factor a problem with one million unknowns [1,2] and

more recently to five million unknowns [3]. Other researchers

have also used Rk methods to extend MOM, each with their own

methodology [4,5,6].

Significant ACA advantages over the early FMM/MLFMM

approaches are: 1) There is no need for analytic Green’s function

formulations; 2) The ACA does not require computation of a

full matrix block before obtaining its UV Rk approximation as

only specific rows and columns of a block need computation;

3) The ACA low rank blocks of a system matrix can be used for

iterative as well as direct LU factorizations. In this work a block

LU factorization/solve solution is used where all of the Z, L and

U factors, V and J are computed and stored in a compressed

outer product form.

In the 50 years since the introduction of MOM [7], Moore’s

law should have suggested a problem size increase N, using

factorization, of approximately (225)1/3 = 322. Assuming a

maximum N = 1000 for 1968 computer capability, we should

have progressed by technology advance alone to N ~ 322,000.

Clearly, we have done 20 to 40 times better. Rk formulations

are responsible for this increase. Algorithms count!

This tutorial is organized as follows: II) Cobble stone spatial

ACES JOURNAL, Vol. 33, No. 10, October 2018

1054-4887 © ACES

Submitted On: September 30, 2018
Accepted On: October 3, 2018

1052

grouping; III) What is low rank; IV) A Rank Fraction metric;

V) Rk matrix math; VI) Thrill of Rk multiplication; VII) Agony

of Rk addition; VIII) Adaptive cross approximation; IX) Rk

Addition “Recompression”; X) LU factorization using the ACA;

XI) Solve using Rk forms for scattering problems; XII) Mercury

MOM scattering code and XIII) Concluding Remarks.

II. COBBLE STONE SPATIAL GROUPING

Spatial grouping of MOM unknowns is the starting point for

creating low rank interaction blocks in the MOM system

matrix. The key notion is to minimize the solid angle subtended

by each pair of test and source groups of unknowns. As the

distance between test/source groups increases, the subtended

solid angle decreases thus reducing the numerical rank of the

interaction, Fig. 2.

With spatial grouping for electrically large problems (as

characterized by tens of thousands to several million unknowns

with group sizes from 500 to 10,000 unknowns) most all blocks

in the system matrix, except for diagonal self-blocks, become

Rk. This includes not only Z blocks but also its L and U factors.

For scattering problems with many RHS illumination angles,

the RHS voltage excitation matrix is Rk as well as the current

solution J and/or M:

       
       
       
       

 
 
 
 

 
   
     

       
     

   
 

 
 
 
 

 

   
   
   
   
   

     

    
    
     
    
    
        

11 12 13 14 1

21 22 23 24 2

31 32 33 34 3

41 42 43 44 4

11 12 13 14 1 1

21 22 23 24 2

31 31 33 34 3

41 41 41 44 4

Z Z Z Z J

Z Z Z Z M

Z Z Z Z J

Z Z Z Z M

I 0 0 0 U U U U J V

L I 0 0 0 U U U M

L L I 0 0 0 U U J

L L L I 0 0 0 U M

 
 
 

 
 
 
 
 
  

2

3

4

H

V

H

. (1)

Each Rk matrix block is written as a low rank approximation

outer product of a column matrix times a row matrix:

 

   
   
   
   
   
   

Au

A
Av . (2)

This Rk form is typically computed using the Adaptive

Cross Approximation (ACA) which means that only a few

rows/columns of A are required. The numerical rank k will

depend on the desired error tolerance. Each matrix block A

never needs to be computed beforehand, i.e., A is virtual in the

sense that only a subroutine capable of computing ACA required

rows/columns of A is required. The cobble stone grouping

algorithm is straight forward: .

 Create a box of all ungrouped unknowns;

 Compute the longest diagonal box vector;

 Pick an arbitrary starting point, typically the end of

diagonal box vector;

 Compute distance from this point to all other

unknowns;

 Sort these distances from close to far (e.g., Q sort);

 Pick nGroup of closet points to form 1st group; and

 Start over, but now with only ungrouped edges.

The grouping pattern is shown in Fig. 1 results.

Fig. 1. Cobble stone grouping examples.

Fig. 2. Spatial source group test group.

III. WHAT IS LOW RANK

Full rank of a (block) matrix is the minimum of the number
of rows or columns. In this case each row or column is
independent. In the less than full rank Rk case, each row or
column is not independent, at least to within some numerical
tolerance. In spatially grouped MOM system block matrices, we
usually have Rk << R and can approximate an (m,n) block as in
(2) where the column U matrix is (m,k) and the row V matrix is
(k,n).

Rank deficient block matrices means that the singular values
of a Singular Value Decomposition (SVD) of that matrix drop
precipitously. SVD theory is the basis for low rank outer product
approximations where a matrix A is expressed as a product of
three matrices A = USV where U and V are unitary where each
column of U and row of V are independent and S is a diagonal
only matrix of ordered real singular values. In the example
below, let the 3rd singular value be less than some tolerance ε,
then A can be approximated as the outer product of a column
matrix times a row matrix:

11 12 13 11 11 12 13

21 22 23 22 21 22 23

31 32 33 33 31 32 33

0 0

0 0

0 0

u u u s v v v

u u u s v v v

u u u s v v v

   
   


   
   
   

A = USV . (3)

With S11 > S22 > S33. If S33 < ε ~ 0, then

11 12

11 12 1311

21 22

21 22 2322

31 32

u u
v v vs

u u
v v vs

u u

   
       

        
      

   

A = USV . (4)

The numerical rank of A is the number of singular values
greater than some judiciously chosen value or tolerance ε. If
the singular values decrease exponentially, as they do in
many MOM problems with unknown grouping, then A is
very compressible. Fig. 3 shows the single precision (6 digits)

ACES JOURNAL, Vol. 33, No. 10, October 20181053

singular values for a 220 by 214 MOM Z interaction block (rank
R = 214) on a log10 scale. There we see that the singular values
have decreased to machine precision (6 orders of magnitude) by
k = 30.

The next question is how to set the tolerance ε. This involves
the Frobenius norm of matrix A [8] which is nothing more than
the square root of the sum of the squares of all elements of A:

2

,1 1

m n

i ji j
a

 
  A . (5)

The SVD approximation error in the outer product
approximation is given in terms of singular values of A. Let
matrix A have rank r and the approximation rank k (using
singular values 1 to k). The error involves the remaining singular
values from k+1 to r. If σk / σ1 ~ 10-5, the fractional error in the
Frobenius norm is small [8]:

2 2

1

2 2

1

k k rF

F r

 

 


  


 

A A

A
. (6)

We see that low rank and tolerance are related and that if the
singular values of A decrease exponentially, then the compressed
form for A (2) has significantly less memory requirements and
perhaps more importantly, significantly less operations count for
matrix multiply operations. The relative norm error then becomes
the compressed matrix of approximate rank k minus the full
matrix divided by norm of the full matrix:

(k)


 

 
compressedA A Au Av A

A A
. (7)

Fig. 3. Singular values for a Rk MOM interaction matrix.

IV. A RANK FRACTION METRIC

An important metric for the compressibility of a matrix is

its Rank Fraction (RF) which is defined as the ratio of

compressed or approximation memory storage to that of the full

matrix. For an m x n matrix with approximation rank k, RF is:

 ()k m n
RF

mn


 . (8)

If m = n, RF = 2k/m. If A is 99% compressed with only 1%
stored, then RF = 0.01. Often a dB scale is used.

V. RK MATRIX MATH

The two very significant advantages of Rk formulations are
the reduced storage for a (block) matrix and the operations count
involving matrix multiplication. For full matrix reference, the
storage for an m x n matrix is Ο(mn) while the operations count
for the multiplication of two matrices, one m x k, the other k x n
is Ο(mkn).

Rk matrix math starts by reviewing inner and outer matrix
products. The dot or inner product of two vectors, each of k
elements, is a row times a column and is characterized by a small
operations count of order Ο(k):

  

1

2

1 2 3 4

3

4

•

y

y
r x x x x

y

y

 
 
  
 
 
 

x y , (9)

while a 2 x k row inner product with a k x 2 column matrix has

an operations count of Ο(4k):

1 1

1 2 3 4 2 2

1 2 3 4 3 3

4 4

J J

R R R R J J

R R R R J J

J J

 

       

     
 

 

 

 

 
                   
 

R J . (10)

The outer product of a single column times a single row is a
full matrix, albeit with rank 1. Let U be (m x 1) and V (1 x n),
then A is (m x n), A = U V with aij = ui vj:

  

1 11 1n

1 n

m m1 mn

u a a

v v

u a a

   
   
   
   
   
   

. (11)

This example dramatically shows the utility of storing a
matrix in its UV outer product form. The equivalent information
can be stored in Ο(m+n) versus Ο(mn). If m = n, the outer
product storage is only 2/m of that required for the full matrix.
No additional information can be obtained by storing the full
matrix. Matrix algebra involving A in its compressed UV form
has significantly less operations count.

The sum of two rank 1 outer products is a rank Rk = 2 matrix

SHAEFFER: LOW RANK MATRIX ALGEBRA FOR MOM 1054

where a i,j = u i,1 v 1,j + u i,2 v 2,j:

 

11 1n 1

2

1 n1

m1 mn m

11 12

11 12 13 1421 22

21 22 23 2431 32

41 42

a a u

v v

a a u

u u

v v v vu u

v v v vu u

u u

k

kk

k





   
   
   
   
   
   

 
 

       
 
 



. (12)

Rk storage is Ο(2(m+n)) or if m = n, Ο(4m) compared to Ο(m2),
a storage ratio of 4/m.

The sum of k rank 1 outer products is:

     

 

1 2

1

11 2

2

. . ..

.

.

.

k k k k

i

i k

i

i

i

k

k

  





          
          
           
          
               
          

  
  
  
  
   
  

  
  
 
 
 

   



u u u

A = UV = v v v

u

v

vu u u

v

v





.(13)

This is the form for the ACA approximation of k rank 1 outer
products used to approximate (compress) A.

The product of a matrix A with a column vector y is a column
vector x, x = A y which is a matrix vector product:

     
     
     
          

x y

A . (14)

The product of a row vector with a matrix A is another row
vector, xT = [Ay]T = yT AT where xT and yT are row vectors. This
is a vector matrix product:

T

t t

 
         
  

x y A . (15)

VI. THRILL OF RK MULTIPLICATION

The product of two or more Rk matrices has a significantly
low operations count compared to that for their full-size
counterparts. Rk matrix-matrix multiply reduces to one of: a)
matrix-vector multiplication; b) vector-matrix multiplication; or

c) matrix-vector plus a small matrix-matrix multiply. Let us use
three cases.

Let case 1 be C = A B where A is Rk and B is full. Then C
is Rk and note that Cu = Au and Cv = Av B:

   

   

     
     
     
     
     
     

      
      
      
      
       

      

Cu Au

B
Cv = Av

Cu Au

B
= ; Cv = Av

. (16)

The opts count is that of a row matrix with a full matrix.

For case 2, let C = A B where A is full and B is Rk then C is
Rk and note that Cu = A Bu and Cv = Bv:

   

   

      
      
      
      
       

      

      
      
      
      
       

      

Cu A Bu

Cv = Bv

Cu A Bu

= ; Cv = Bv

. (17)

Again, the opts count is that of a full matrix with a column
matrix.

For case 3 let C = A B where each matrix is Rk and note than
Cu = Au or Cv = Bv depending on which gives the lowest rank
for C. Assuming Au is the lower rank option then:

     

     

     
     
     
     
     
     

      
      
      
      
       

      

Cu Au Bu

Cv = Av Bv

Cu Au Bu

= ; Cv = Av Bv

. (18)

For cases 1 and 2 matrix-matrix multiply reduces to matrix-
vector multiply. For case 3 we have a low operations count inner
product multiply followed by a “small” matrix - row matrix
multiply. In each of these cases the operations count involving
Rk matrices is significantly lower than their full-size matrix
counter parts. When multiplying Rk matrices, one strives to do
the low operations count inner products first as suggested in case
3 and then a matrix-vector or vector-matrix multiply. Often the
left- or right-hand side of a Rk product is simply either the left
or right-hand side U or V.

VII. AGONY OF RK ADDITION

The sum of two or more Rk matrices has undesirable
consequences. Let D = A + B + C where A, B and C are Rk:

ACES JOURNAL, Vol. 33, No. 10, October 20181055

     

 

u u u

v v v

u u u u
v

v v

v

     
     
      
     
     
     

   
 

   
 

     
   

 
    
   

A B C

A B C

A B C D
A

B D

C

. (19)

A terrible thing just happened, the Rk rank of D is sum of the Rk
ranks of A, B, and C. This does not mean that D is not low rank,
but it does mean that D requires “recompression.” More on this
in section IX.

VIII. ADAPTIVE CROSS APPROXIMATION

A number of techniques can be used to compute the low
rank Rk approximation to a (block) matrix A. SVD and QR
factorizations are possible but they suffer from two very
significant drawbacks: a) all of the matrix A must be computed
beforehand and b) the operations count is prohibitive, typically
O(m3). The Adaptive Cross Approximation (ACA) popularized
in [9,11] does not suffer these problems. The ACA operations
count is k2(m+n) and, most significantly, the ACA does not
require a prior computation of the full matrix A. The ACA only
requires various rows and columns of A. A is virtual in the sense
that it only needs to exist as a subroutine which can compute
needed rows and columns required by the ACA. It is not
compressed in the sense of an SVD or QR.

There are several requirements for successful ACA
computation. First, the singular values must drop exponentially
which is usually the case for MOM PEC problems with spatially
grouped unknowns. Second, the integral operator should have a
smooth decay with distance. Our free space Green’s function is
not quite smooth but the ACA still works well. For the PEC L
operator, ACA works very well. For the curl K operator, where
the integrand also has geometric terms, ACA may be problematic
since sub-blocks can be exactly low rank. In this case special
efforts are required to obtain the UV approximation. The ACA
is adaptive in the sense that the algorithm always looks for
the largest element in a row/column to compute the next kth
row/column in the approximation. The ACA terminates when
the desired approximation tolerance is obtained.

A six-step algorithm as outlined in [9] starts by writing
(block) matrix A as the sum of its approximation plus its error
and then solving for the error:

approximation

approximation

 

   

A A E

E A A A UV

. (20)

The goal at each step is to make the error as small as possible
with each successive rank one UV outer product term where

successive terms add columns to U and rows to V. At the kth
step, the error is:

p

  
  
       
   
  



p

k

k k k p

p=1

u

E = A - U V = A - v . (21)

The next row/column in the approximation is obtained by
setting the pivot row/column error to zero in order to compute
the next UV outer product term. The choice of row/column
is made by finding the maximum element in the last UV
approximation which is called pivoting. Note that only rows/
columns of E, A and UV are required at each step.

The ACA approximation stops when the norm of the next
UV term is less than the desired tolerance, where Ak is a
recursive norm computed based only on terms to date [9]:

 k k

k


u v

A
. (22)

Fig. 4 shows the ACA approximation error for a 220 x 214
MOM interaction matrix as a function of the iteration.
Convergence to 10-4 is achieved by k=20. Also plotted are the
corresponding normalized singular values and the true error
norm as computed from the full matrix.

Fig. 4. ACA recursive norm, true error norm and singular values for an Rk

MOM interaction matrix.

For a given outer product error tolerance the SVD
approximation has the least rank [8]; however, the ACA
approach is still quite acceptable.

An example of the Z block rank fraction compression (on a
20 dB scale) achieved by the ACA for an open pipe target with
92,220 unknowns, block size 800, for ε= 10-5 is shown in Fig. 5.
The corresponding LU block rank fraction compression is
shown in Fig. 6. While there is some fill-in, the LU blocks are
never the less very sparse.

SHAEFFER: LOW RANK MATRIX ALGEBRA FOR MOM 1056

Fig. 5. Rank fraction, 20 dB scale, for block matrices for an LU factored matrix.

Fig. 6. Rank fraction, 20 dB scale for Z block matrices in system matrix.

IX. RK ADDITION “RECOMPRESSION”

As we saw in section VII, the sum of a number of Rk terms
is itself Rk. However, if we add all terms directly, we end up
with the sum Rk equal to sum of the ranks of each term in the
sum. This is untenable. A methodology is required to accomplish
such Rk sums. Two possible addition “recompression” approaches
can be utilized.

Before we outline each approach, let us put into perspective
the sizes involved when using either of these techniques when
doing block wise LU Rk factorization and solve operations. As
an example, let us consider a one million unknown problem
where the Rk group size is 5000. This translates into a system
matrix of size 200 x 200 blocks with each block 5000 x 5000.
The LU factorization and solve formulas (discussed below) have
sums involving up to 200 terms of (5000 x k) and (k x 5000) UV
terms where k is the rank of each term.

In the 1st approach [2,10] we utilize the ACA to directly
compute the Rk form for D = UV using the rows/columns from
each term Sk in the sum:

  
p

p

u

v

  
  
  
    



S

UV SD = . (23)

After choosing an ACA tolerance ε, the required ACA rows are
easily computed from the RHS of (23):

p

  
          
   

 
    
 
   

 , (24)

while the required ACA columns are computed from the RHS
of (23) as:

p

  
        
   

 
 

  
 

 

 . (25)

This is a speedy process which encompasses a vector-matrix
or matrix-vector multiply. In spite of the tedious looking
process, it can be accomplished surprising quickly. This
procedure is in essence a methodology for computing the Rk sum
using the ACA without the necessary requirements for many QR
recompressions required when using the 2nd approach. It should
be noted that many of these operations can be computed in
parallel, OpenMP for outer loops and BLAS libraries for lower
level matrix-vector operations.

The 2nd “recompression” approach involves doing a QR
factorization of the U and of V components of D = UV coupled
with an SVD compression using the desired tolerance. Details
can be found in [11], but briefly the process involves:

 Perform a QR factorizaton on U and V

 Perform SVD on the small matrix

T T

v v

T T

v v



   

u u v v

u u

u u

U = Q R ; V = Q R

D Q R R Q

R R UΣV R R

. (26)

X. LU FACTORIZATION USING THE ACA

The rationale for solving the MOM system matrix via LU
factorization is well known [4,12]. In this section we will
examine the procedure for a symmetric system matrix and, most
importantly, show a technique for performing Rk addition using
the ACA which builds on Rk multiplication.

The symmetric matrix factor form [13] is:

    
    
    
    
    

    

T

11 12 13 14

T

12 22 23 24

T T

13 23 33 34

T T T

14 24 34 44

Z = U D U

I D I U U U

U I D I U U

U U I D I U

U U U I D I

,

 (27)

ACES JOURNAL, Vol. 33, No. 10, October 20181057

which can be recast into standard form as:

  
  
  
  
  

   

' ' ' '

11 12 13 14

' ' '
21 22 23 24

' '
31 32 33 34

'
41 42 43 44

I U U U U

L I U U U
Z

L L I U U

L L L I U

. (28)

The solution for each U block [2] is:

1

1

, , , , ,

1

iBlk

iBlk jBlk iBlk jBlk iBlk pBlk pBlk pBlk pBlk jBlk

pBlk






  U Z L D U , (29)

where the D-1’s are the dense (not Rk) inverse diagonal blocks
(computed using standard LU factorization). Note the sum terms
involving Rk forms for UT and U. Depending on total number of
unknowns, these blocks can range in size from 2500 to 10,000.
The Rk form for the U’s and Z’s (29) becomes:

       

,

1

1

1

,, , ,

, ,

u

v

u u up i

v v v

p

p pi j i p pi j j

i j iBlk jBlk



 



            
                        
        



   
      

           

 
             



Z L U

Z L D U

U

U

.

 (30)

In this expression, we need to compute the left-hand U in Rk
form, using the ACA, where all sum terms on the right-hand side
are known. In order to accomplish this, the ACA needs
rows/columns of the right-hand side. The approach is to recast
the RHS as a sum of S matrices in Rk form as shown in section
VII:

  
1

1

uk

v

p

p





  
  
  
    



S

S . (31)

Each Sp matrix in the sum is:

   

     

1

 or

u u

v v

u u u

v v v



   
   
   
      

        
                 
                

S Z

S Z

S L U

S L D U

. (32)

Each Sk sum term is computed using Rk multiplication before
using the 1st ACA “recompression” approach outlined in section
VII.

XI. SOLVE USING RK FORMS FOR SCATTERING PROBLEMS

For scattering problems, once the LU factored matrix is
computed in Rk form, the solution for the currents can be
computed in a similar approach where the RHS voltage forcing
function and resulting currents may also be expressed block wise
in Rk form:

 

 or or

1,1 1,

 or

 or or

,1 ,

nAng

iPol

k k nAng

v v u

v

v v

   

 

   



   
   
    
   
   
    

V

V V . (33)

The resulting block wise current solution may also be
expressed in Rk from:

 

 or or

1,1 1,

 or

 or or

,1 ,

nAng

iPol

k k nAng

j j u

v

j j

   

 

   



   
   
    
   
   
    

J

J J . (34)

The LU block wise forward/back solve formulas [2] are:

1

1

1

i

i i ip pp p

p






 
  
 

Y V L D Y , (35)

1

1

1

i

i i i ip p

p n




 

 
  

 
J D Y U J . (36)

Finally, the full polarization scattering matrix is computed
using the Rk forms for the Row measurement matrix [7]. In the
backscatter case R is the transpose of the monostatic incident
block wise plane wave excitation forcing function V [7], each is
in Rk form:

T

T T

u v v u



 

R V

R R V V
. (37)

The block wise column current solution J in Rk form [7] is then
used with the row measurement matrix to obtain the full
polarization scattering matrix:

 

  


 

 

 

 
 

    
     
       

 
 

J J

R

R
. (38)

XII. MERCURY MOM SCATTERING CODE

The computer code MERCURY MOM, [1-3] was built
based on the Rk math discussed above. This code is a frequency
domain MOM SIE/VIE scattering code which uses RWG
triangles and SWG tetrahedrons. SIE boundary conditions
include PEC, dielectric, R card, thin dielectric and IBC.
Junctions are included between SIE RWG triangles and VIE

tetrahedrons. The three EM operators ,  and _tilde are

utilized to compute three of the four general unknown SIE
surface currents: J+, J-, M+. A Galerkin symmetric matrix is
utilized, and the full polarization scattering matrix is computed.

Mercury MOM was designed to be run on inexpensive
work station class computers located in engineering design
environments on an engineers’ desk. The computer used by the

SHAEFFER: LOW RANK MATRIX ALGEBRA FOR MOM 1058

author for the five million unknown result [3] was a circa 2013
two socket Intel Xeon processor with 10 cores each (20 total)
with a cost of $8900.

XIII. CONCLUDING REMARKS

Spatial grouping / Rk math / ACA / LU factorization-solve

techniques have allowed our community to significantly extend

the capability of full wave solutions of Maxwell’s equations

for electrically large bodies, all within the standard MOM

framework. This means that increasely large problem sizes can

be done in MOM full wave form before we must resort back

to problematic and approximate high frequency methods [14]

of PO/GO/PTD/GTD/SBR. Rk methods can be implemented

on inexpensive workstation class computers located on design

engineers’ desks and allow a much greater exploration of design

space parameters.

The quote in [12] succinctly sums up our quest: “A good

computation is one that does the least computation for the right

answer” which for practical engineering purposes we might

change ‘right answer’ to ‘right/good enough answer.’

REFERENCES

[1] J. Shaeffer, “Direct solve of electrically large integral equations for

problem sizes to 1 M unknowns,” IEEE Trans. Antennas Propag., vol. 56,

no. 8, pp. 2306-2313, Aug. 2008.

[2] J. Shaeffer, “Direct solve of electrically large integral equations for

problem Sizes to 1M unknowns,” NASA/CR-2008-215353, Sept. 2008

[3] J. Shaeffer, “Five million unknown MOM LU factorization on a PC

workstation,” Antenna Measurement Techniques Association Meeting,

Long Beach, CA, Oct. 11-16, 2015.

[4] A. Heldring, J. Rius, J. M. Tamayo, J. Parron, and E. Ubeda, “Multiscale

compressed block decomposition for fast direct solution of method of

moments linear system,” IEEE Trans. Antennas Propag., vol. 59, no. 2,

pp. 526-536, Feb. 2011.

[5] A. Manic, A. Smull, F. H. Rouet, X. S. Li, and B. Notaros, “Efficient

scalable parallel higher order direct MOM-SIE method with

hierarchically semiseparable structures for 3-d scattering,” IEEE Trans.

Antennas Propag., vol. 65, no. 5, pp. 2467-2478, May 2017.

[6] H. Guo, Y. Liu, J. Hu, and E. Michielssen, “A butterfly-based direct

integral-equation solver using hierarchical LU factorization for analyzing

scattering from electrically large conducting objects,” IEEE Trans.

Antennas Propag., vol. 65, no. 9, pp. 4742-4650, Sept. 2017.

[7] R. F. Harrington, Field Computation by Moment Methods. New York,

NY, USA: Macmillan, 1968.

[8] L. Trefethen and D. Bau, Numerical Linear Algebra. Philadelphia, PA:

Soc. Indust. Appl Math. (SIAM), 1997.

[9] S. Kurz, O.Rain, and S. Rjasanow, “Application of the adaptive cross

approximation technique for the coupled BE-FE solution of

electromagnetic problems,” Presented at the Int. Association Boundary

Element Methods Conf., IABEM 2002, Austin, TX, May 28-30, 2002.

[10] J. F. Shaeffer, “Systems and methods for analysis and design of radiating

and scattering objects,” United States Patent No. 7,844,407 B1, Nov. 30,

2010.

[11] M. Bebendorf, Hierarchical Matrices. Berlin, Springer-Verlag, 2008.

[12] S. Ambikasaran, “Fast algorithms for dense numerical linear algebra and

applications,” Ph.D. Dissertation, Stanford University, Aug. 2013.

[13] G. Golub and C. Van Loan, Matrix Computations. 3rd. Baltimore, MD:

The John Hopkins Univ. Press, 1996.

[14] E. F. Knott, J. F. Shaeffer, and M. T. Tuley, Radar Cross Section. 2nd

Edition, Raleigh, NC: Scitech Publishing, 2004.

ACES JOURNAL, Vol. 33, No. 10, October 20181059

 HistoryItem_V1
 DelPageNumbers

 Range: all pages

 1
 640
 293

 AllDoc

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 138
 137
 138

 1

 HistoryItem_V1
 AddNumbers

 Range: all even numbered pages
 Font: Times-Roman 8.0 point
 Origin: top left
 Offset: horizontal 43.20 points, vertical 26.64 points
 Prefix text: ''
 Suffix text: ''
 Use registration colour: no

 TL

 1052
 TR
 1
 0
 629
 187
 0
 8.0000

 Even
 130
 1
 AllDoc

 CurrentAVDoc

 43.2000
 26.6400

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 130
 129
 65

 1

 HistoryItem_V1
 AddNumbers

 Range: all odd numbered pages
 Font: Times-Roman 8.0 point
 Origin: top right
 Offset: horizontal 43.20 points, vertical 26.64 points
 Prefix text: ''
 Suffix text: ''
 Use registration colour: no

 TR

 1052
 TR
 1
 0
 629
 187

 0
 8.0000

 Odd
 130
 1
 AllDoc

 CurrentAVDoc

 43.2000
 26.6400

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 130
 128
 65

 1

 HistoryList_V1
 qi2base

