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Abstract—This tutorial presents the use of low rank Rk 

matrix block formulations for advancing the problem size 

capability N of the Method of Moments full wave approach 

to solving Maxwell’s integral equations. When MOM 

unknowns are spatially grouped, the group-group 

interaction matrix blocks become low rank for electrically 

large problems. A very significant advantage of this  

Rk property along with use of the Adaptive Cross 

Approximation leads to dramatic reduction in memory 

storage and in operations count. While early Rk approaches 

focused on iterative approaches, this work shows how Rk 

methods can be applied to direct solve LU factorization 

approaches and, for scattering problems, Rk methods can 

be used to compute the full polarization scattering matrix. 

 

Keywords—ACA, Direct Factor Method of Moments, 

electromagnetic scattering, Rk math.  

I. BACKGROUND 

Full wave solvers for Maxwell’s integral equations are the 

much-preferred approach when they can be implemented. And 

direct factor rather than iterative solutions avoids the well-

known failures of the latter. However, the direct factor 

computational cost for N unknowns is immense: N2 for matrix 

storage, N3 for matrix LU factorization and N2 for each RHS 

excitation solution.  

Researchers in the last 20-30 years have improved on this 

situation by recognizing that MOM system matrices, when 

unknowns are spatially grouped, lead to low rank blocks within 

the overall system matrix. Early researchers developed iterative 

solvers based on analytic Green’s Function expansions (FMM 

and MLFMM). While these approaches significantly increased 

problem sizes they suffered from several problems: 1) They 

required special development of analytical Green’s functions; 

2) They were not well adapted for multiple RHS problems 

                                                           

1 Early portions of this work were funded by the late Mrs. Arlene K Shaeffer. NASA funded validation and development of SIE/VIE 

capability as well the multiple SIE boundary condition capability. 

where the iterative scheme has to restart fresh for each new 

RHS vector which limits FMM and MLFMM usefulness for 

backscatter problems with many RHS’s; 3) They often have 

slow and no convergence for the iterative solution for problems 

involving significant interactions; and 4) They often require 

matrix preconditioners. 

More recently we have seen the development of the 

Adaptive Cross Approximation (ACA) for computing the low 

rank UV approximation to system matrix blocks, based on 

spatial grouping of unknowns. Whole new approaches to 

solving MOM system matrices has resulted.This includes the 

author’s development in 2006 of Mercury MOM, the first code 

to LU factor a problem with one million unknowns [1,2] and 

more recently to five million unknowns [3]. Other researchers 

have also used Rk methods to extend MOM, each with their own 

methodology [4,5,6]. 

Significant ACA advantages over the early FMM/MLFMM 

approaches are: 1) There is no need for analytic Green’s function 

formulations; 2) The ACA does not require computation of a 

full matrix block before obtaining its UV Rk approximation as 

only specific rows and columns of a block need computation; 

3) The ACA low rank blocks of a system matrix can be used for 

iterative as well as direct LU factorizations. In this work a block 

LU factorization/solve solution is used where all of the Z, L and 

U factors, V and J are computed and stored in a compressed 

outer product form. 

In the 50 years since the introduction of MOM [7], Moore’s 

law should have suggested a problem size increase N, using 

factorization, of approximately (225)1/3 = 322. Assuming a 

maximum N = 1000 for 1968 computer capability, we should 

have progressed by technology advance alone to N ~ 322,000. 

Clearly, we have done 20 to 40 times better. Rk formulations 

are responsible for this increase. Algorithms count! 

This tutorial is organized as follows: II) Cobble stone spatial  
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grouping; III) What is low rank; IV) A Rank Fraction metric; 

V) Rk matrix math; VI) Thrill of Rk multiplication; VII) Agony 

of Rk addition; VIII) Adaptive cross approximation; IX) Rk 

Addition “Recompression”; X) LU factorization using the ACA; 

XI) Solve using Rk forms for scattering problems; XII) Mercury 

MOM scattering code and XIII) Concluding Remarks. 

II. COBBLE STONE SPATIAL GROUPING 

Spatial grouping of MOM unknowns is the starting point for 

creating low rank interaction blocks in the MOM system 

matrix. The key notion is to minimize the solid angle subtended 

by each pair of test and source groups of unknowns. As the 

distance between test/source groups increases, the subtended 

solid angle decreases thus reducing the numerical rank of the 

interaction, Fig. 2. 

With spatial grouping for electrically large problems (as 

characterized by tens of thousands to several million unknowns 

with group sizes from 500 to 10,000 unknowns) most all blocks 

in the system matrix, except for diagonal self-blocks, become 

Rk. This includes not only Z blocks but also its L and U factors. 

For scattering problems with many RHS illumination angles, 

the RHS voltage excitation matrix is Rk as well as the current 

solution J and/or M: 
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Each Rk matrix block is written as a low rank approximation 

outer product of a column matrix times a row matrix: 
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This Rk form is typically computed using the Adaptive 

Cross Approximation (ACA) which means that only a few 

rows/columns of A are required. The numerical rank k will 

depend on the desired error tolerance. Each matrix block A 

never needs to be computed beforehand, i.e., A is virtual in the 

sense that only a subroutine capable of computing ACA required 

rows/columns of A is required. The cobble stone grouping 

algorithm is straight forward: . 

 Create a box of all ungrouped unknowns;  

 Compute the longest diagonal box vector;  

 Pick an arbitrary starting point, typically the end of 

diagonal box vector; 

 Compute distance from this point to all other 

unknowns; 

 Sort these distances from close to far (e.g., Q sort); 

 Pick nGroup of closet points to form 1st group; and 

 Start over, but now with only ungrouped edges. 

The grouping pattern is shown in Fig. 1 results. 

 

 
 
Fig. 1. Cobble stone grouping examples. 

 

 
 

Fig. 2. Spatial source group test group. 
 

III. WHAT IS LOW RANK 

Full rank of a (block) matrix is the minimum of the number 
of rows or columns. In this case each row or column is 
independent. In the less than full rank Rk case, each row or 
column is not independent, at least to within some numerical 
tolerance. In spatially grouped MOM system block matrices, we 
usually have Rk << R and can approximate an (m,n) block as in 
(2) where the column U matrix is (m,k) and the row V matrix is 
(k,n). 

Rank deficient block matrices means that the singular values 
of a Singular Value Decomposition (SVD) of that matrix drop 
precipitously. SVD theory is the basis for low rank outer product 
approximations where a matrix A is expressed as a product of 
three matrices A = USV where U and V are unitary where each 
column of U and row of V are independent and S is a diagonal 
only matrix of ordered real singular values. In the example 
below, let the 3rd singular value be less than some tolerance ε, 
then A can be approximated as the outer product of a column 
matrix times a row matrix: 
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With S11 > S22 > S33. If S33 < ε ~ 0, then 
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A = USV . (4) 

The numerical rank of A is the number of singular values 
greater than some judiciously chosen value or tolerance ε. If  
the singular values decrease exponentially, as they do in  
many MOM problems with unknown grouping, then A is  
very compressible. Fig. 3 shows the single precision (6 digits) 
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singular values for a 220 by 214 MOM Z interaction block (rank 
R = 214) on a log10 scale. There we see that the singular values 
have decreased to machine precision (6 orders of magnitude) by 
k = 30. 

The next question is how to set the tolerance ε. This involves 
the Frobenius norm of matrix A [8] which is nothing more than 
the square root of the sum of the squares of all elements of A: 

 
2

,1 1

m n

i ji j
a

 
  A . (5) 

The SVD approximation error in the outer product 
approximation is given in terms of singular values of A. Let 
matrix A have rank r and the approximation rank k (using 
singular values 1 to k). The error involves the remaining singular 
values from k+1 to r. If σk / σ1 ~ 10-5, the fractional error in the 
Frobenius norm is small [8]: 
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We see that low rank and tolerance are related and that if the 
singular values of A decrease exponentially, then the compressed 
form for A (2) has significantly less memory requirements and 
perhaps more importantly, significantly less operations count for 
matrix multiply operations. The relative norm error then becomes 
the compressed matrix of approximate rank k minus the full 
matrix divided by norm of the full matrix: 

 
(k)


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compressedA A Au Av A

A A
. (7) 

 

Fig. 3. Singular values for a Rk MOM interaction matrix. 

IV. A RANK FRACTION METRIC 

An important metric for the compressibility of a matrix is 

its Rank Fraction (RF) which is defined as the ratio of 

compressed or approximation memory storage to that of the full  

matrix. For an m x n matrix with approximation rank k, RF is: 

 ( )k m n
RF

mn


 . (8) 

If m = n, RF = 2k/m. If A is 99% compressed with only 1% 
stored, then RF = 0.01. Often a dB scale is used. 

V. RK MATRIX MATH 

The two very significant advantages of Rk formulations are 
the reduced storage for a (block) matrix and the operations count 
involving matrix multiplication. For full matrix reference, the 
storage for an m x n matrix is Ο(mn) while the operations count 
for the multiplication of two matrices, one m x k, the other k x n 
is Ο(mkn).   

Rk matrix math starts by reviewing inner and outer matrix 
products. The dot or inner product of two vectors, each of k 
elements, is a row times a column and is characterized by a small 
operations count of order Ο(k): 

  
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while a 2 x k row inner product with a k x 2 column matrix has 

an operations count of Ο(4k): 
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The outer product of a single column times a single row is a 
full matrix, albeit with rank 1. Let U be (m x 1) and V (1 x n), 
then A is (m x n), A = U V with aij = ui vj: 
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This example dramatically shows the utility of storing a 
matrix in its UV outer product form. The equivalent information 
can be stored in Ο(m+n) versus Ο(mn). If m = n, the outer 
product storage is only 2/m of that required for the full matrix. 
No additional information can be obtained by storing the full 
matrix. Matrix algebra involving A in its compressed UV form 
has significantly less operations count. 

The sum of two rank 1 outer products is a rank Rk = 2 matrix  

SHAEFFER: LOW RANK MATRIX ALGEBRA FOR MOM 1054



where a i,j = u i,1 v 1,j + u i,2 v 2,j: 
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Rk storage is Ο(2(m+n)) or if m = n, Ο(4m) compared to Ο(m2), 
a storage ratio of 4/m. 

The sum of k rank 1 outer products is: 
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This is the form for the ACA approximation of k rank 1 outer 
products used to approximate (compress) A. 

The product of a matrix A with a column vector y is a column 
vector x, x = A y which is a matrix vector product: 
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The product of a row vector with a matrix A is another row 
vector, xT = [Ay]T = yT AT where xT and yT are row vectors. This 
is a vector matrix product: 
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VI. THRILL OF RK MULTIPLICATION 

The product of two or more Rk matrices has a significantly 
low operations count compared to that for their full-size 
counterparts. Rk matrix-matrix multiply reduces to one of: a) 
matrix-vector multiplication; b) vector-matrix multiplication; or  

c) matrix-vector plus a small matrix-matrix multiply.  Let us use 
three cases.   

Let case 1 be C = A B where A is Rk and B is full. Then C 
is Rk and note that Cu = Au and Cv = Av B: 
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The opts count is that of a row matrix with a full matrix. 

For case 2, let C = A B where A is full and B is Rk then C is 
Rk and note that Cu = A Bu and Cv = Bv: 
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Again, the opts count is that of a full matrix with a column 
matrix. 

For case 3 let C = A B where each matrix is Rk and note than 
Cu = Au or Cv = Bv depending on which gives the lowest rank 
for C. Assuming Au is the lower rank option then: 
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For cases 1 and 2 matrix-matrix multiply reduces to matrix-
vector multiply. For case 3 we have a low operations count inner 
product multiply followed by a “small” matrix - row matrix 
multiply. In each of these cases the operations count involving 
Rk matrices is significantly lower than their full-size matrix 
counter parts. When multiplying Rk matrices, one strives to do 
the low operations count inner products first as suggested in case 
3 and then a matrix-vector or vector-matrix multiply. Often the 
left- or right-hand side of a Rk product is simply either the left 
or right-hand side U or V. 

VII. AGONY OF RK ADDITION 

The sum of two or more Rk matrices has undesirable 
consequences. Let D = A + B + C where A, B and C are Rk: 
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A terrible thing just happened, the Rk rank of D is sum of the Rk 
ranks of A, B, and C. This does not mean that D is not low rank, 
but it does mean that D requires “recompression.” More on this 
in section IX.  

VIII. ADAPTIVE CROSS APPROXIMATION 

A number of techniques can be used to compute the low  
rank Rk approximation to a (block) matrix A. SVD and QR 
factorizations are possible but they suffer from two very 
significant drawbacks: a) all of the matrix A must be computed 
beforehand and b) the operations count is prohibitive, typically 
O(m3). The Adaptive Cross Approximation (ACA) popularized 
in [9,11] does not suffer these problems. The ACA operations 
count is k2(m+n) and, most significantly, the ACA does not 
require a prior computation of the full matrix A. The ACA only 
requires various rows and columns of A.  A is virtual in the sense 
that it only needs to exist as a subroutine which can compute 
needed rows and columns required by the ACA. It is not 
compressed in the sense of an SVD or QR.  

There are several requirements for successful ACA 
computation. First, the singular values must drop exponentially 
which is usually the case for MOM PEC problems with spatially 
grouped unknowns. Second, the integral operator should have a 
smooth decay with distance. Our free space Green’s function is 
not quite smooth but the ACA still works well. For the PEC L 
operator, ACA works very well. For the curl K operator, where 
the integrand also has geometric terms, ACA may be problematic 
since sub-blocks can be exactly low rank. In this case special 
efforts are required to obtain the UV approximation. The ACA 
is adaptive in the sense that the algorithm always looks for  
the largest element in a row/column to compute the next kth 
row/column in the approximation. The ACA terminates when 
the desired approximation tolerance is obtained.   

A six-step algorithm as outlined in [9] starts by writing 
(block) matrix A as the sum of its approximation plus its error 
and then solving for the error: 

 

approximation

approximation

 

   

A A E

E A A A UV

. (20) 

The goal at each step is to make the error as small as possible 
with each successive rank one UV outer product term where  

successive terms add columns to U and rows to V. At the kth 
step, the error is: 

 

p

  
  
       
   
  



p

k

k k k p

p=1

u

E = A - U V = A - v . (21) 

The next row/column in the approximation is obtained by 
setting the pivot row/column error to zero in order to compute 
the next UV outer product term. The choice of row/column  
is made by finding the maximum element in the last UV 
approximation which is called pivoting. Note that only rows/ 
columns of E, A and UV are required at each step. 

The ACA approximation stops when the norm of the next 
UV term is less than the desired tolerance, where Ak is a 
recursive norm computed based only on terms to date [9]: 

 k k

k


u v

A
. (22) 

Fig. 4 shows the ACA approximation error for a 220 x 214 
MOM interaction matrix as a function of the iteration. 
Convergence to 10-4 is achieved by k=20. Also plotted are the 
corresponding normalized singular values and the true error 
norm as computed from the full matrix. 

 

 

 

Fig. 4. ACA recursive norm, true error norm and singular values for an Rk 

MOM interaction matrix. 

 

For a given outer product error tolerance the SVD 
approximation has the least rank [8]; however, the ACA 
approach is still quite acceptable. 

An example of the Z block rank fraction compression (on a 
20 dB scale) achieved by the ACA for an open pipe target with 
92,220 unknowns, block size 800, for ε= 10-5 is shown in Fig. 5. 
The corresponding LU block rank fraction compression is 
shown in Fig. 6. While there is some fill-in, the LU blocks are 
never the less very sparse. 
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Fig. 5. Rank fraction, 20 dB scale, for block matrices for an LU factored matrix. 

 

 

Fig. 6. Rank fraction, 20 dB scale for Z block matrices in system matrix. 

 

IX. RK ADDITION “RECOMPRESSION” 

As we saw in section VII, the sum of a number of Rk terms 
is itself Rk. However, if we add all terms directly, we end up 
with the sum Rk equal to sum of the ranks of each term in the 
sum. This is untenable. A methodology is required to accomplish 
such Rk sums. Two possible addition “recompression” approaches 
can be utilized.   

Before we outline each approach, let us put into perspective 
the sizes involved when using either of these techniques when 
doing block wise LU Rk factorization and solve operations. As 
an example, let us consider a one million unknown problem 
where the Rk group size is 5000. This translates into a system 
matrix of size 200 x 200 blocks with each block 5000 x 5000. 
The LU factorization and solve formulas (discussed below) have 
sums involving up to 200 terms of (5000 x k) and (k x 5000) UV 
terms where k is the rank of each term. 

In the 1st approach [2,10] we utilize the ACA to directly 
compute the Rk form for D = UV using the rows/columns from 
each term Sk in the sum: 

  
p

p

u

v

  
  
  
    



S

UV SD = . (23)
 

After choosing an ACA tolerance ε, the required ACA rows are 
easily computed from the RHS of (23): 

 

p

  
          
   

 
    
 
   

 , (24) 

while the required ACA columns are computed from the RHS 
of (23) as: 

 

p

  
        
   

 
 

  
 

 

 . (25) 

This is a speedy process which encompasses a vector-matrix 
or matrix-vector multiply. In spite of the tedious looking 
process, it can be accomplished surprising quickly. This 
procedure is in essence a methodology for computing the Rk sum 
using the ACA without the necessary requirements for many QR 
recompressions required when using the 2nd approach. It should 
be noted that many of these operations can be computed in 
parallel, OpenMP for outer loops and BLAS libraries for lower 
level matrix-vector operations. 

The 2nd “recompression” approach involves doing a QR 
factorization of the U and of V components of D = UV coupled 
with an SVD compression using the desired tolerance. Details 
can be found in [11], but briefly the process involves: 

 

  Perform a QR factorizaton on U and V

     Perform SVD on the small  matrix

T T

v v

T T

v v



   

u u v v

u u

u u

U = Q R ; V = Q R

D Q R R Q

R R UΣV R R

. (26) 

X. LU FACTORIZATION USING THE ACA 

The rationale for solving the MOM system matrix via LU 
factorization is well known [4,12]. In this section we will 
examine the procedure for a symmetric system matrix and, most 
importantly, show a technique for performing Rk addition using 
the ACA which builds on Rk multiplication. 

The symmetric matrix factor form [13] is: 

    
    
    
    
    

    

T

11 12 13 14

T

12 22 23 24

T T

13 23 33 34

T T T

14 24 34 44

Z = U D U

I D I U U U

U I D I U U

U U I D I U

U U U I D I

, 

 (27) 
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which can be recast into standard form as: 

 

  
  
  
  
  

   

' ' ' '

11 12 13 14

' ' '
21 22 23 24

' '
31 32 33 34

'
41 42 43 44

I U U U U

L I U U U
Z

L L I U U

L L L I U

. (28) 

The solution for each U block [2] is: 

 
1

1

, , , , ,

1

iBlk

iBlk jBlk iBlk jBlk iBlk pBlk pBlk pBlk pBlk jBlk

pBlk






  U Z L D U , (29) 

where the D-1’s are the dense (not Rk) inverse diagonal blocks 
(computed using standard LU factorization). Note the sum terms 
involving Rk forms for UT and U. Depending on total number of 
unknowns, these blocks can range in size from 2500 to 10,000. 
The Rk form for the U’s and Z’s (29) becomes: 

       

,

1

1

1

,, , ,

, ,

u

v

u u up i

v v v

p

p pi j i p pi j j

i j iBlk jBlk



 



            
                        
        



   
      

           

 
             



Z L U

Z L D U

U

U

. 

 (30) 

In this expression, we need to compute the left-hand U in Rk 
form, using the ACA, where all sum terms on the right-hand side 
are known. In order to accomplish this, the ACA needs 
rows/columns of the right-hand side. The approach is to recast 
the RHS as a sum of S matrices in Rk form as shown in section 
VII: 

  
1

1

uk

v

p

p





  
  
  
    



S

S . (31) 

Each Sp matrix in the sum is: 

 
   

     

1

  or

u u

v v

u u u

v v v



   
   
   
      

        
                 
                

S Z

S Z

S L U

S L D U

. (32) 

Each Sk sum term is computed using Rk multiplication before 
using the 1st ACA “recompression” approach outlined in section 
VII. 

XI. SOLVE USING RK FORMS FOR SCATTERING PROBLEMS 

For scattering problems, once the LU factored matrix is 
computed in Rk form, the solution for the currents can be 
computed in a similar approach where the RHS voltage forcing 
function and resulting currents may also be expressed block wise 
in Rk form: 

 
 

 or  or 

1,1 1,

 or 

 or  or 

,1 ,

nAng

iPol

k k nAng

v v u

v

v v

   

 

   



   
   
    
   
   
    

V

V V . (33) 

The resulting block wise current solution may also be 
expressed in Rk from: 

 
 

 or  or 

1,1 1,

 or 

 or  or 

,1 ,

nAng

iPol

k k nAng

j j u

v

j j

   

 

   



   
   
    
   
   
    

J

J J . (34) 

The LU block wise forward/back solve formulas [2] are: 

 
1

1

1

i

i i ip pp p

p






 
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 

Y V L D Y , (35) 

 
1

1

1

i

i i i ip p

p n




 

 
  

 
J D Y U J . (36) 

Finally, the full polarization scattering matrix is computed 
using the Rk forms for the Row measurement matrix [7]. In the 
backscatter case R is the transpose of the monostatic incident 
block wise plane wave excitation forcing function V [7], each is 
in Rk form: 

 
T

T T

u v v u



 

R V

R R V V
. (37) 

The block wise column current solution J in Rk form [7] is then 
used with the row measurement matrix to obtain the full 
polarization scattering matrix: 

 

 

  


 

 

 

 
 

    
     
       

 
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J J

R

R
. (38) 

XII. MERCURY MOM SCATTERING CODE 

The computer code MERCURY MOM, [1-3] was built 
based on the Rk math discussed above. This code is a frequency 
domain MOM SIE/VIE scattering code which uses RWG 
triangles and SWG tetrahedrons. SIE boundary conditions 
include PEC, dielectric, R card, thin dielectric and IBC. 
Junctions are included between SIE RWG triangles and VIE 

tetrahedrons. The three EM operators ,  and _tilde are 

utilized to compute three of the four general unknown SIE 
surface currents: J+, J-, M+. A Galerkin symmetric matrix is 
utilized, and the full polarization scattering matrix is computed. 

Mercury MOM was designed to be run on inexpensive  
work station class computers located in engineering design 
environments on an engineers’ desk. The computer used by the 
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author for the five million unknown result [3] was a circa 2013 
two socket Intel Xeon processor with 10 cores each (20 total) 
with a cost of $8900. 

XIII. CONCLUDING REMARKS 

Spatial grouping / Rk math / ACA / LU factorization-solve 

techniques have allowed our community to significantly extend 

the capability of full wave solutions of Maxwell’s equations  

for electrically large bodies, all within the standard MOM 

framework. This means that increasely large problem sizes can 

be done in MOM full wave form before we must resort back  

to problematic and approximate high frequency methods [14] 

of PO/GO/PTD/GTD/SBR. Rk methods can be implemented  

on inexpensive workstation class computers located on design 

engineers’ desks and allow a much greater exploration of design 

space parameters. 

The quote in [12] succinctly sums up our quest: “A good 

computation is one that does the least computation for the right 

answer” which for practical engineering purposes we might 

change ‘right answer’ to ‘right/good enough answer.’ 
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