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Abstract ─In this paper, a Discontinuous Galerkin  

finite element time-domain method (DG-FETD) based 

on non-conforming hybrid meshes is presented for 

analysis of the ferrite device. The DG-FETD method 

with explicit difference scheme is firstly used to 

analyze the electromagnetic characteristics of complex 

medium such as ferrite material to reduce memory 

requirement and computational time. The recursive 

convolution (RC) method is applied into DG-FETD to 

deal with the constitutive relation of ferrite material. 

What’s more, the non-conforming hybrid mesh method 

with tetrahedron-hexahedron is employed to improve 

the flexibility and accuracy in mesh processing and 

reduce the number of unknowns. Numerical results 

show the efficiency of the proposed method. 

 

Index Terms ─Discontinuous Galerkin finite element 

time-domain method, ferrite device, non-conforming 

hybrid meshes. 
 

I. INTRODUCTION 
Nowadays, the analysis of the electromagnetic 

properties for complex medium has received much 

attention. The ferrite material which is regarded as 

complex medium is widely used for the ultra-miniature 

and ultra-wideband device with characteristic of non-

reciprocity such as circulator and isolator. For these 

ferrite device, both the finite element time-domain 

method (FETD) [1] and the finite-difference time-

domain method (FDTD) [2] can be used to analyze 

electromagnetic characteristics. Although the FDTD 

method is simple, it suffers from serious degradation 

when modeling curved and fine geometrical features, 

because staircase approximation introduces large 

discretization errors even when the grid size is very 

small. The conventional FETD method with the 

characteristic of flexible modeling can not form the 

block diagonal which must calculate a large sparse 

matrix inversion via solver. Fortunately, discontinuous 

Galerkin method has been proposed and combined with 

the FETD method called discontinuous Galerkin finite 

element time-domain (DG-FETD) method [3]-[5]. 

Numerical fluxes are introduced to impose the tangential 

continuity of the electrical and magnetic fields at the 

interfaces between adjacent elements. Central flux [6] 

and upwind flux [7] are the common ways and a 

comparative study of these two schemes can be found 

in [8]. The DG-FETD has enhanced flexibility of FETD 

and can support irregular non-conforming meshes 

constituted of various types and shapes. It also supports 

various basis functions in different sub-domains. 

Furthermore, the resulting mass matrix is a block 

diagonal matrix and the method can lead to a fully 

explicit time-marching scheme. To improve the accuracy 

of modeling and reduce the number of unknowns,  

the non-conforming meshes based on hexahedron-

tetrahedron is introduced into DG-FETD [9], [10] and 

the information between neighboring elements is 

exchanged through central flux [11], [12]. To treat the 

ferrite material in the time-domain analysis, we usually 

use the recursive convolution (RC), piecewise linear RC 

(PLRC) and the trapezoidal RC (TRC) techniques [13]-

[15]. In this letter, we introduce RC technique into DG-

FETD to deal with the constitutive relation of ferrite 

material for the first time and further introduce the non-

conforming mesh technique to RC-DGFETD which can 

reduce computational time, memory requirement and 

number of unknowns effectively. It can also improve 

flexibility of modeling. We will also try to implement 

PLRC and TRC as a future venue of research. 
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The theory of the non-conforming RC-DGFETD  

is presented in Section II. The numerical results are 

discussed in Section III, and the conclusion is drawn in 

Section IV. 
 

II. THEORY AND IMPLEMENTATION OF 

THE NON-CONFORMING DG-FETD 

A. Ferrite material 

Permeability of the ferrite is a tensor that varies 

with frequency when an external magnetic field exists. 

We assume that an alternating magnetic field H  

and constant bias magnetic field 
0H  in direction y is 

imposed on the ferrite, the total magnetization 
tM  and 

the total magnetic intensity 
tH
 
are then expressed as:  

 0t H H y H , (1) 

 t sM M y M . (2) 

Where M denotes alternating magnetization due to 

H( 0HH ). In frequency domain, when the external 

magnetic field is parallel to the Y axis, the permeability 

[16] can be expressed as: 
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Where ( )r   and 
 
denote relative magnetic 

permeability and gyromagnetic ratio respectively. 
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sM  denotes saturation magnetization. 

The Eq. (3) can be transformed into time domain 

expression with Inverse Fast Fourier Transforms (IFFT) 

method, then 
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B. RC-DGFETD for Ferrite material 

Considering the area of the ferrite device, one can 

use the following Maxwell’s curl equations to describe 

the distribution of electromagnetic fields: 
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Because the relative permittivity 
r  

is independent 

to frequency, we focus on the derivation of (6), and (5) 

will be derived with formula of domain containing 

PML, which is introduced to truncate the boundary. We 

use the basis function 
h

if
 
to test (6), and covert it by  

vector identical equation and divergence theorem. 

The (6) can then be changed into: 
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The Central-flux is employed between elements 

and has the following forms:   
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Where E and H represent the electrical and 

magnetic fields within sub-domain V, 
E and 

H  

represent the electrical and magnetic fields from the 

adjacent elements. Applying (9) into (7) leads to: 

 

0 ( ( ))

1

2

1

2

h h

i r j

h e h e

i j i j

V

h e

i j

V

V

V

dV

h
t dV

t

dSe

e

e

dS

 



 




 



   

 

 







 







f f

f f f n f

f n f

. (10) 

Insertion of (4) into (10) and further use of recursive 

convolution leads to: 
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The (11) can be converted into a matrix equation: 
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In this paper, the perfect matched layer (PML) is 

constructed to truncate the computation region, DG-

FETD for PML domain is also given:  
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Here, ( )t  is diagonal tensor: 
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Using the basis function e

if  
and h
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to test (13) and 

(14) respectively and the central-flux conditions is 

applied between neighboring elements. Then the 

convolution theorem and divergence theorem is applied, 

(13) and (14) can be changed into: 
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 (16) 

Because parameter 0  and m  
have no value in 

non-ferrite material region, so we can couple the matrix 

equations of PML region and ferrite region as follows: 
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(17) and (18) is discretized using leap-frog in time: 
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C. Non-conforming hybrid interfaces matrix 

calculation 

The implementation of the DG-FETD method on 

hybrid meshes mainly focuses on the computation of 

the matrix involving integrals over a hybrid interface 

between current elements in V and neighboring elements 

in V+ of the different type, it has no relationship with 

other matrix involving integrals over an element or an 

interface between two elements of the same type. So we 

concentrate on the calculation of such integrals of (11) 

as follows: 
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Where h

j


f  and e

j


f  denote basis functions of 

neighboring elements. There are several cases of non-

conforming interfaces, two complex cases will be 

considered as follow. Case (a) as shown in Fig. 1 (a) 

corresponds to the situation where current element in V 

is a hexahedron and the neighboring elements in V+ are 

six tetrahedrons. The curved hexahedron basis function 

is employed in current element and edge basis functions 

of tetrahedral element is employed in neighboring 

elements [17]. One hexahedron and six tetrahedrons 

form the interfaces in which one quadrangular and six 
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triangulars intersect into six non-conforming surfaces, 

when we calculate the integrals of [Sse] and [Ssh] in (17) 

and (18) of hexahedron hybrid interface, for example, 

[Sse] can be calculated as: 
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where 
e

if  is curved hexahedron basis function, h

j


f  is 

Whitney vector basis function of the neighboring 

tetrahedral cells. 1S 2S 3S 4S 5S 6S  denote the hybrid 

interfaces of the hexahedron and the integrals in Eq. 

(23) are stored for each hybrid interface. 

Case (b) as shown in Fig. 1 (b) corresponds to the 

situation where the current element in V is a tetrahedron 

and the neighboring elements in V+ are hexahedrons. 

For this situation, e

if  represents Whitney vector basis 

function and 
h

j


f  represents curved hexahedron basis 

function.  
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Fig. 1. (a), (b) Non-conforming hybrid interfaces formed 

by one hexahedron and six tetrahedrons and one 

tetrahedron and four hexahedrons 

 

III. NUMERICAL RESULTS AND 

DISCUSSION 
The numerical results are presented in this section 

to show the accuracy and efficiency of non-conforming 

RC-DGFETD for analyzing the ferrite material. Figure 

2 shows the model of the Y-junction circulator, the size 

of the wave guide aperture is 22.86mm 10.16mm and 

the ferrite cylinder of the model with a radius of 3.5mm 

and a height of 10.16mm. Twenty layers PML are 

employed with a thickness of 2.5mm for each layer. The 

hybrid hexahedral-tetrahedral meshes and tetrahedral 

meshes are employed respectively as shown in Fig. 3. 

In the first case, the simulation domain is firstly 

discretized with tetrahedral grid of 1.5mm for the domain 

of air and hybrid hexahedral-tetrahedral grid of 0.3mm 

for the ferrite part. In the second case, the model is 

discretized with tetrahedral grid of 1.5mm. Constant 

magnetic field is imposed in the direction of y, which  

is perpendicular to the propagating direction of the 

microwave. The magnetic intensity is 200 Oe, saturation 

magnetization is 1317G/4 , the relative permittivity  

of the ferrite material is 11.7. The excitation source 

used in the simulation is a Gaussian pulse with center 

frequency of 10GHz and bandwidth of 4GHz. The 

comparison of the results between different methods is 

shown in Figs. 4-7 and the comparison of the detailed 

parameters of Y-junction circulator is also listed in 

Table 1. 
 

 
 

Fig. 2. Geometry of the Y-junction circulator. 

 

 
 

Fig. 3. Hybrid and tetrahedral meshes of the Y-junction 

circulator. 
 

-15

-10

-5

0

5

10

0 1 2 3 4 5 6E
le

c
tr

ic
 f

ie
ld

 (
V

/m
)

Time(ns)

E of the input port

E of the throughout port

E of the isolated port

 
 

Fig. 4. Time domain waveforms of electric field in 

different port of Y-junction circulator with hybrid. 
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Fig. 5. Reflection loss of input port with hybrid DG-

FETD and tetrahedral mesh DG-FETD and CST. 
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Fig. 6. Insertion loss of the throughout port with hybrid 

DG-FETD, and DG-FETD with tetrahedral grid and 

CST. 
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Fig. 7. Isolated degree of isolation port with hybrid DG-

FETD and tetrahedral mesh DG-FETD and CST. 

 

Table 1: Parameters of Y-junction circulator with 

different decomposition method 

Method 
Element 

Number 
Un-knowns 

t  
(ns) 

Number of 

Time Steps 

CPU 

Time(s) 

Hybrid 21379 280259 80 18750 4049 

Tetrahedral 39064 397613 50 30000 15516 

 

From Fig. 5 to Fig. 7, a good agreement of the 

results between the DG-FETD and CST can be observed. 

The number of unknowns for the hybrid mesh is reduced 

compared with the tetrahedral mesh for simulations 

with comparable accuracy levels as shown in Table 1. 

What’s more, the iterative time of the hybrid mesh 

method is much less than that of the tetrahedral mesh.  

Finally, The comparison between the SETD [18] 

method and the DG-FETD is also given in Fig. 2 and 

Table 2. Both of the methods are applied to analyze the 

same model in the first example. A good agreement of 

the results between SETD and DG-FETD can be found 

in Fig. 8. The memory requirement and unknowns for 

the DG-FETD are reduced compared with the SETD as 

shown in Table 2. What’s more, the memory requirement 

of the DG-FETD is also much less than that of the 

standard SETD. 
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Fig. 8. The scattering parameters of Y-junction circulator 

with DG-FETD and SETD. 

 

Table 2: Computational cost of the two methods 

Method  Unknowns CPU Time(s) Memory (GB) 

DG-FETD 89992 973 171MB 

SETD 94971 3940 197MB 

 

IV. CONCLUSION 
This paper proposes a DG-FETD based on non-

conformal meshes for the analysis of the ferrite 

circulator. The Discontinuous Galerkin method is 

presented to solve time-domain Maxwell’s equation  

and the central-flux is used. Furthermore, the non-

conformal mesh method is utilized in the DG-FETD to 

reduce the memory requirement and the number of 

unknowns. Numerical results show the efficiency of the 

non-conformal DG-FETD, especially for the memory 

requirement and iterative time. 
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