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Abstract ─ The time domain parabolic equation method 

(TDPE) is an efficient tool for analyzing electromagnetic 

(EM) scattering by electrically large objects. It reduces 

the cost of computational resources by dividing three-

dimensional solution space into multiple two-

dimensional transverse planes for calculating scattered 

fields one by one. For thin coated perfectly electrically 

conducting (PEC) objects, the efficiency of TDPE method 

will decrease if dielectric is considered to be meshed. 

As an approximate method, Leontovich impedance 

boundary condition (IBC) handles this problem by 

modeling a surface impedance on the outer surface  

of coating dielectric, instead of solving Maxwell's 

equations in the dielectric domain. Thus in this paper, 

TDPE method based on Leontovich IBC is proposed to 

analyze broadband scattering problems of large-scale 

coated PEC objects. Numerical results have validated 

the accuracy and efficiency of the proposed method. 

 

Index Terms ─ Coated objects, impedance boundary 

condition, time domain parabolic equation, wideband 

electromagnetic scattering. 
 

I. INTRODUCTION 
Recently, accurate and efficient prediction of wide-

band electromagnetic (EM) scattering characteristic for 

electrically large objects has been required increasingly 

in many regions, because the broadband detection and 

stealth of targets are applied widely. The radar cross 

sections (RCS) evaluation of objects is a vital tool for 

the target identification and the optimization of objects’ 

shape or coating. However, the coated material for 

stealth and camouflage will increase the complexity and 

reduce the efficiency in the EM scattering analysis. 

Therefore, it is necessary to develop an accurate and 

efficient numerical method to handle this problem. The 

parabolic equation (PE) method has been widely used 

to analyze the propagation of acoustic wave [1,2], light 

wave [3,4] and seismic wave [5], because it modules 

the wave propagating along the paraxial direction. The 

method is firstly proposed by Lenontovich and Fock in 

[6], where the electromagnetic (EM) wave diffraction 

on the earth’s surface is researched. After then, the EM 

wave propagation over obstacle surface [7], irregular 

terrain [8] and even expressway [9] is also modeled, 

calculated and analyzed. The PE method converts a three- 

dimensional (3D) problem to multiple two-dimensional 

(2D) problems by marching the solving plane. In this 

way, the computational resources can be reduced 

dramatically [10-13]. Recently, more attention is focused 

on the solution in time domain since the requirement 

for broadband or transient analysis becomes more 

urgent [14]. The 2D time domain parabolic equation 

(TDPE) developed by Murphy is utilized to analyze 

ocean acoustic propagation [16]. Later, a 3D vector 

TDPE is proposed for solving wide-band EM scattering 

problems of perfectly conducting (PEC) objects with 

high efficiency [17].  

However, less work reports on the wide-band 

analysis of composite objects, especially for coated 

objects [18,19]. In traditional rigorous methods, e.g., 

surface integral equation (SIE) [20-24] and volume-

surface integral equation (VSIE) [25], the number of 

unknowns will increase significantly if coating 

dielectric is meshed because thickness is usually small 

compared to the wavelength. Leontovich impedance 

boundary condition (IBC) which prescribes on the outer 

surface of coating materials can overcome this problem 

[26]. It avoids the dense grids and costly solution inside 

the coating by constituting a local relationship between 

the tangential components of the electric field and 

magnetic field. In [27], IBC is introduced into time-

domain integral equation (TDIE) to analyze transient 

scattering from coated bodies. Both unknown electric 

and magnetic currents are considered and modeled 

independently to guarantee the continuity of normal 

components across mesh edges. The method is free of 

spurious resonant solutions and exact fields can be 

obtained. TDIE presents obvious advantages when 

analyzing open boundary problems of homogeneous 

scatterers because it automatically satisfies the radiation 

condition. Only scatterers need a discretization rather 

than the whole solution space. This results in a sharp 

decrease on the number of unknowns. However, huge 
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computational resources will be cost on solving dense 

matrix equations in TDIE, even if it is accelerated by 

the plane-wave time-domain algorithm and multilevel 

fast multipole algorithm which restricts its application on 

analyzing large-scale scattering and radiation problems. 

In this paper, we propose TDPE with Leontovich 

IBC to solve wide-band EM scattering from coated 

objects. The dielectric region is described by IBC, 

which leads to a great reduction in computing times and 

memory requirements. The implicit finite difference 

(FD) scheme of Crank–Nicolson (CN) type is employed 

to solve the parabolic equation. The transient scattered 

fields can be computed plane by plane along the 

forward wave propagation direction. Additionally, the 

complete scattering field in all directions can be 

obtained by the rotating TDPE method. 
 

II. THREE-DIMENSIONAL TIME DOMAIN 

PARABOLIC EQUATION METHOD 

A. Vector three-dimensional TDPE formulations 

Parabolic equation is an approximate form of the 

wave equation in paraxial direction. The wave equation 

in source-free region can be written as: 
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where   denotes the scattered field component and k 

is the wave number. 

Assuming the x axis is the paraxial direction of the 

parabolic equation, the reduced scattered field can be 

defined as: 
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Substitute (2) to (1) and factorize it, the forward 

and backward parabolic equation can be obtained: 
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where 
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 denotes the pseudo 

differential operator. u  and u  represent the forward and 

backward components of the reduced scattered field.  

With the first order Taylor series expansion, Q  can 

be approximated as: 
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Thus, the standard parabolic equation can be 

obtained: 
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The vector PE is composed of three scalar 

parabolic equations in three dimensions. The standard 

vector PE in free space can be written as: 
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Define a Fourier transform as: 
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where  
0

i tF k e dt

 
iE  is a spectrum function, iE  

represents the incident plane wave, s ct x   is the 

distance from the paraxial wave-front ct and c is the 

light speed. 

Using the Fourier transform in (7), the three 

dimensional vector PE in time domain is obtained: 
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where ( , , )x y z

    denotes the components of 

transient reduced scattered field for ,x y    and z   

directions, respectively. 

Applying central difference scheme to (8), the 

semi-discretized form of the time-domain PE can be 

derived: 
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in which 
,
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   is the unknown, x , y , z  

are the spatial range steps in three dimensions and s  

is the time step. 
2
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2

z
  denote the second-order 

difference operator along the y-and z-axes, respectively: 
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By using the CN FD scheme to solve (9), the 

discrete form of vector TDPE can be derived as (10), 

where 
, ,

,

m p q

l
  represents the reduced transient scattered 

field at the location of ( , , )m x p y q z      at the time step 

of l s . As observed in (10), the unknown on the 

(m+1)th transverse plane at the (l+1)th time step can be 

calculated from the values on the mth  transverse plane 

at the (l+1)th time step and those at the l th time step. 

The computation process of CN FD scheme is shown in 

Fig. 1. The calculation can be taken plane by plane with 

marching along the paraxial direction for each time step. 

As a result, the computational resources reduce because 

it converts a 3D problem into several 2D problems. As 

seen in Fig. 2, every plane consists of 4 parts which 

need to be mesh: 1) the truncation boundary, 2) free 

space, 3) the scatterer boundary, and 4) the interior of 

scatterers. In this paper, the perfect matching layers 

(PML) are employed to truncate transverse plane  

and the IBC is adopted according to the thin coat of 

scatterers. It will be introduced in Section III detailedly. 

In each solution plane, the fields at the boundary grids 

of scatterers are computed by IBC and the fields at 

other grids can be obtained by (10), i.e., the CN FD 

scheme. 
 

z

1th

mth

Mth

Paraxial

direction

Transeverse plane

Scatterer

 
 

Fig. 1. Computation process of CN FD scheme in 

TDPE method. 

1) Truncation boundary

2) Free space

3) Scatterer boundary 

4) Interior of scatterers

 
 

Fig. 2. Computation regions and mesh grids in a 

transverse plane. 

 

B. Rotating TDPE method 

The standard PE gets a good accuracy only in the 

range of smaller than 15   around the paraxial direction, 

as shown in Fig. 3 (a), because the error of first order 

Taylor series expansion for pseudo differential operator 

in (4) is proportional to 
4

sin  , where   is the angle 

between the observed direction and the paraxial 

direction. To obtain full-angle scattering fields, the 

rotating TDPE method is used. In Fig. 3 (b), the 

paraxial direction is fixed at x-axis while the scatterer 

and incident wave are rotated by a specified angle to 

make the observed area around the paraxial direction. 

After rotation, the grids of targets can be regenerated 

directly by the coordinate transformation and 

repartitioned into a new series of transverse planes to be 

solved. Accordingly, for an irregular and asymmetric 

target, the full bistatic RCS can be calculated by 

rotating at least 12 times. 
 

y

x

Incident 

Wave

Paraxial 

direction

Observed

area

 
 (a) 

y

x

Incident Wave

Paraxial 

direction

Observed

area

 
 (b) 

 

Fig. 3. Scheme of rotating TDPE method. (a) A narrow-

anlge scattering pattern around the paraxial direction 

can be obtained accurately by a single TDPE run. (b) 

Results of other angles can be obtained by rotating the 

objects and incident waves. 

 

III. IMPLEMENTATION OF THE TDIBC IN 

THE TDPE FORMULATION 
Leontovich IBC is an approximate boundary 

condition in the electromagnetic. It constructs a 

relationship between the the tangential components of 

the electric field E and the magnetic field H. The 

relation is defined on the outer surface   of the thin 

homogeneous dielectric and the equivalent impedance 

depends on the coating materials.  

Leontovich IBC can be written as follows: 

   ˆ ˆ ˆ( ) ( )n P Z n n P   E H , (11) 

where n̂  is the outward directed normal of point P on 

the  . Z represents the surface impedance of point P, 

which is given by: 
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where 0 0
,   is the permeability and permittivity in  
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free space, ,
r r

   is the relative permeability and 

permittivity of the dielectric and d denotes the thickness 

of the coating. 

As seen from (12), it is difficult to obtain the time-

domain expression of Z analytically by using a Fourier 

transform. Thus we utilize the vector fitting method 

[28] to solve this problem. ( )Z   in frequency domain 

is approximated by the rational fraction in Laplace 

domain ( )s j : 
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Using partial-fraction expansion, (13) can be 

rewritten as: 
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p  is the pole and 
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c  is the residue. In this way, 

the expression of Z in time domain can be easily 

obtained: 
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By substituting iw E H  to (11), the IBC can 

be expressed only by electric field E: 
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The total electric field E in (16) is the sum of the 

incident field and scattering field, i.e., 
s i
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where 
s ikxe uE  in PE method. So the scalar form of E 

can be written as: 
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. 

(21) 

Therefore, the time-domain IBC can be derived 

from (19)~(21) by using Fourier transforms. It should 

be noted that the convolution operation ( ) ( )Z t t  can 

be expanded by [29]: 
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, (22) 

where 
2

(0)

0

i

t
p

i i
c e d


 



  , 
( 1/ 2)

( )

( 1/ 2)

i

k t
pk

i i
k t

c e d


 
 

 
  , n 

denotes the number of time steps and t  denotes the 

time increment. 

Let 
( ) ( ) ( )

1

n
n k n k

i i

k

 




   and it can be computed by 

the recursion convolution:  

 
/ 2( ) ( 1) ( 1)

(1 )i i i
p t p t p tn n ni

i i

i

c
e e e

p
 

   
     . (22) 

By substituting (24) to (23), ( ) ( )Z t t  can be 

calculated quickly. This approach avoids numerous 

integral operations in the convolution and saves 

computational time. 
 

IV. NUMERICAL RESULTS 
All the numerical results are tested on Lenovo 

personal computer of Inter Q9500 (2.83GHz) with 

RAM of 8G. The incident source for all the examples in 

this paper is the modulated Gaussian pulse, and it can 

be written as: 

  
2

2

ˆ( )
ˆ, exp

2

p
t k c

t n




  
 

 
  
 

i
E

r
r , (23) 
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where n̂  is the unit vector of electrical field, k̂  is the 

wave vector, 10
p

   is the time delay,  3 / bwf   

is the pulse width and bwf  is the bandwidth.  

 

A. Wide-band scattering from a coated PEC cylinder 

We firstly analyze a coated PEC cylinder with 

radius of 2m and height of 2m by using the proposed 

method and the time domain integral equation (TDIE) 

method with IBC, which is computed by in-house code. 

The relative complex permittivity of the coating material 

is j 2 jr       and the relative permeability is 

1r  . The thickness of coating material is 0.01m. As 

shown in the inset of Fig. 4, a y-polarization plane wave 

illuminates along the center axis of the cylinder. Both 

the incident direction and paraxial direction of TDPE 

method are along the +x axis. The bandwidth of the 

modulated Gaussian pulse in this example is 600MHz. 

The bistatic RCS calculated by TDIE and TDPE at 

200MHz, 300MHz and 400MHz are shown in Figs. 4 

(a)-(c). It can be found that there is a good agreement 

between them. The bistatic RCS for all azimuthal angles 

is obtained by rotating TDPE. In order to evaluate the 

error in the TDPE method, the root mean square errors 

(RMSE) of RCS changing with the azimuthal angle   

are defined as: 

 
2

1

1
RMSE

N
IE

i i

iN
 



  , (24) 

where N is the number of frequency points, 
i  and IE

i  

are the RCS values computed by TDPE and TDIE with 

IBC at the thi  frequency point, respectively. Figure 5 

compares the errors of RCS ranging from 0    to 45  

which are obtained by a single TDPE run and rotating 

TDPE method. It can be observed that the RMSE of a 

single TDPE run stays lower than 1dB within 15  along 

the paraxial direction and increases as angle becomes 

larger. It proves the fact that the standard TDPE only 

gets a good accuracy only within a narrow-angle range 

around the paraxial direction and the full bistatic RCS 

can be obtained by using rotating TDPE method, as 

described in Section II. In this example, 7 rotating 

TDPE runs are used to obtain the final results. Figure 6 

gives the comparison between the two methods on the 

magnitudes of reduced transient scattered fields at the 

point of (2m, 2.6m, 0m). It also verifies the accuracy of 

the proposed method and the late-time behavior is 

stable because of the CN FD scheme. To discuss the 

influence of dielectric loss on the proposed method, 

three different kinds of coated materials with 

2 0.1jr  , 2 0.5jr  and 2 1.0jr   are 

analyzed and compared. Table 1 shows the average  

RMSE with respect to the TDIE results, defined as 

1

RMSE

M

i

M


  (M is the number of calculated angles). 

It can be seen that the errors for all three materials 

achieve a low level lower than 1dB and are almost 

independent of frequencies. The proposed method has a 

high accuracy when the thickness of coated material is 

small. 
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Fig. 4. Bistatic RCS of a coated PEC cylinder at 

different frequencies: (a) f = 200 MHz, (b) f = 300 MHz, 

and (c) f = 400 MHz. The incident direction of the plane 

wave is shown in the inset of (a).  
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Fig. 5. Comparison of RMSE for bistatic RCS calculated 

by a single TDPE run and the rotating TDPE method. 
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Fig. 6. Transient scattered field at the point (2m, 2.6m, 

0m). The unit LM represents light meter and 1LM = 1/c, 

where c is the light speed in free space. 
 

Table 1: Average RMSE calculated for different coated 

materials with different permittivity 

Material Constant Average RMSE(dB) 

2 0.1jr   0.60 

2 0.5jr   0.61 

2 1.0jr   0.58 

 

B. Wide-band scattering from a coated PEC spherical 

cone 

To discuss the accuracy and efficiency of the 

proposed method further, the broadband scattering of  

a coated PEC spherical cone is analyzed. The cone  

is coated with dielectric of 2 jr  , 1r   and the 

thickness is 0.01m. The radius of the hemisphere is 4m 

and the height of the cone is 6m. The simulated 

scenario is shown in the inset of Fig. 7. A y-polarization 

plane wave illuminates from the top of the cone. Both 

the incident direction and paraxial direction of TDPE 

method are also along the +x axis. The bandwidth of the 

modulated Gaussian pulse in this example is 1GHz. The 

full bistatic RCS results computed by rotating TDPE  

at 200MHz, 500MHz and 800MHz achieve a good 

agreement with the results of TDIE in Figs. 7 (a)-(c). 

This demonstrates that the proposed method is still 

accurate when the frequency band is further broadened. 

The transient forward-scattered field values are 

presented in Fig. 8, where a remarkable consistence is 

achieved between the two methods. Additionally, the 

computational resources of the two methods are 

compared in Table 2. It can be found that both the 

memory requirement and the time consumption reduce 

significantly for the proposed method. Therefore, it is 

an efficient tool to analyze the wideband scattering 

from electrically large coated objects. 
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Fig. 7. Bistatic RCS of a coated PEC spherical cone at 

different frequencies: (a) f = 200 MHz, (b) f = 500 MHz, 

and (c) f = 800 MHz. The incident direction of the plane 

wave is shown in the inset of (a).  
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Fig. 8. Transient scattered field at the point (10m, 2m, 

0m). The unit LM represents light meter and 1LM = 1/c, 

where c is the light speed in free space. 

 

Table 2: Comparison of the computational resources for 

the TDIE with IBC method and the proposed method 

Methods 
Peak Memory 

Requirement (MB) 

Total CPU 

Time (h) 

TDIE-IBC 8562 18.9 

TDPE-IBC 352 10.8 

 
VI. CONCLUSION 

In this paper, we propose the time-domain parabolic 

equation method with impedance boundary condition to 

analyze the wideband scattering from electrically large 

coated objects. The TDPE method increases the 

efficiency by converting the three-dimensional problem 

to multiple two-dimensional problems. And additionally, 

most of the computational resources do not need to be 

consumed on the dielectric regions due to the impedance 

boundary condition. The accurate bistatic RCS for all 

directions can be obtained by the rotating TDPE method. 

Numerical results have validated the accuracy and 

efficiency of this method. 
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