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Abstract ─ We determine the radiation from an infinitely 

flanged rectangular waveguide using the modal 

decomposition matrix (MDM) method. The MDM 

method computes the electromagnetic field components 

at the aperture in the Fourier domain by representing the 

radiated field in terms of a sampling of the free-space 

transverse wave number. The results of the MDM 

approach show good agreement with numerical 

approaches using commercial electromagnetic modeling 

software.  

Index Terms ─ EM propagation, flanged rectangular 

waveguide, modal decomposition matrix, spherical value 

decomposition, stationary phase. 

I. INTRODUCTION
In practice, designers use flush mounted aperture 

antennas widely and approximate their models by an 

aperture in an infinite conducting surface (infinite 

flange). The analysis of radiation from an infinitely 

flanged open rectangular waveguide has been widely 

studied and presenting using different analytical methods 

for calculating the electromagnetic (EM) fields at the 

aperture [1-3]. Furthermore, the solutions determined 

by these methods reasonably approximate those of a 

radiating waveguide with a finite flange [4]. After 

calculating the EM fields at the aperture, the stationary 

phase equation determines the radiated far field [5]. 

Although accurate, known methods require the additional 

calculation of the Fourier transform of the EM fields at 

the aperture before they can apply them to the stationary 

phase equation. In high fidelity computer simulations 

with many millions of mesh cells, algorithms numerically 

compute the EM fields at the boundaries of every 

mesh cell across the waveguide aperture. For far field 

calculations using stationary phase, these methods also 

require a Fourier transform of every EM field at the 

boundary of every mesh cell across the aperture leading 

to unnecessary additional computational expense. 

This paper reviews a less computationally costly 

approach that analytically computes the components of 

the EM fields at the aperture of an infinitely flanged 

open rectangular waveguide in the Fourier domain. Our 

approach directly solves for these fields without the need 

of a computationally expensive Fourier transform. The 

approach uses the modal decomposition matrix (MDM) 

based on a modal sampling of the transverse free space 

wave number. This approach results in a matrix equation 

solving directly for the Fourier field components needed 

for stationary phase calculations of the radiated far 

fields. The authors originally published the MDM 

method as an internal report [6], and mean for this review 

paper to distribute the results to a wider audience of peer 

reviewed journals. 

We compare the results determined by the MDM 

method to the far field radiation patterns and return loss 

calculations achieved by CST Studio Suite 2017 for a 

3D model and simulation of the same problem. The 

comparison shows excellent agreement between the 

simulations and the numerical techniques using the 

MDM method. 

II. MODAL DECOMPOSITION OF A

RECTANGULAR WAVEGUIDE
This section describes the theory of matching the 

transverse electric (TE) and magnetic (TM) fields that 

exist inside a uniform rectangular waveguide to those of 

the radiated far fields in free space. We base the below 

description of the modal decomposition on known theory 

[7, 8]. We assume the dominant propagating mode 

generates the transverse EM fields inside the waveguide. 

The cutoff frequency (fc) of the waveguide determines 

when the dominant mode changes from an attenuating to 

a propagating mode. For a rectangular waveguide, the 

dominant mode is TE10 [9]. 

By matching to the spectral component of the 
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radiated field at the aperture, we derive a system of 

equations that yield the transverse aperture EM fields in 

the Fourier domain. Based on this we use the stationary 

phase equation to calculate the far field radiation 

patterns. We now construct the form of the electric and 

magnetic fields that exist inside the waveguide due to a 

propagating TE10 mode. 

 

A. Propagating TE10 mode case 

We assume the incident TE10 wave in Fig. 1 exists 

in the waveguide with the following form: 

      ' 'NTincE r e V z , (1) 

      ' 'NTincH r h I z , (2) 

where r = x∙xo + y∙yo + z∙zo, ρ = x∙xo + y∙yo, and V(z)  

and I(z) are the voltage and current at point z inside  

the waveguide. N denotes that the incident mode is 

propagating in the waveguide and ’’ denotes a TE mode 

while ’ denotes a transverse magnetic (TM) mode. 

 

 
 

Fig. 1. Illustration of the boundary between the waveguide 

and free space at z=0 and its transverse cross section. 

  

Figure 1 shows two orientations of the same 

rectangular waveguide. A half space boundary exists at 

z=0, and the waveguide extends to -∞ in the zo-direction. 

The literature describes this as the semi-infinite 

waveguide approximation [7].    

We define the mode functions eυ(ρ) and hυ(ρ): 
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where υ represents the (m, n) pair known as the mode 

number where (m, n)≥0. In the remainder of this paper, 

we use υ=M or N to denote non-incident and incident 

modes in the waveguide, but these also represent (m, n) 

pairs. For instance, the TE10 mode has mode indices of 

m=1 and n=0. We determine A’υ and A’’υ by normalizing 

(3-6) across the transverse plane of the waveguide: 
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where δmk is defined as δmk=0 for m≠k, δmm=1 and 

similarly for δnl. Solving (8, 9) for the normalization 

constants yield: 
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where Pmn is the propagating mode’s amplitude. 

Taking (3-6) and (9, 10) into account we construct 

the total transverse fields inside the waveguide for z0: 
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where Γυ is the reflection coefficient at the aperture. We 

define Z’υ, Z”υ, and κυ as: 
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Here ko is the free space wave number, (mπ/a)2=
2
xk , and 

(nπ/b)2= 2
yk . We define the equations for the transverse 

radiated electric and magnetic fields when z≥0: 
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where kTυ represents the mode dependent (kx,ky) pair and 

~ denotes these components are in the Fourier domain. 

 
III. MODAL DECOMPOSITION 

MATRIX METHOD 
We now equate the vector equations of ET(r) and 

HT(r) of (11, 12) to (16, 17). Doing so equates the TE 

and TM fields at the waveguide free space boundary of 

z=0 in Fig. 1. The expressions obtained populate the 

MDM allowing us to solve for the Fourier components 

of the transverse fields at the aperture of the open 

waveguide.  

  
A. Derivation of MDM equation 

To express the fields at the waveguide free space 

boundary we equate (11) to (16) and (12) to (17). Setting 

z=0 yields: 
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The following orthogonality equations [6]: 
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allow us to simplify (18, 19) in terms of Γυ, 
~

( , )x yk kE , 

and 
~

( , )x yk kH , where S is the surface dimensions of  

the rectangular waveguide. By limiting the bounds of 

integration in (20, 21), we enforce the boundary 

condition that ET(r) = 0 on the conducting surface of the 

waveguide and flange. Using the following substitutions: 
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we can rewrite (18, 19) as the following system of 

equations: 
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We use equations (24-31) to populate the MDM and 

solve for the Fourier components of the fields at the 

aperture. By adding like Γυ terms together from (24-31) 

we rewrite the system of equations as: 
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By representing the integrals in k space as a 

Riemann Sum over kx and ky, we will formulate the 

MDM equation. Simplifying (32, 33), we write 
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we form the matrix equation: 
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We solve for A by expanding (33) as: 
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where kx and ky are mode number dependent. 

Equations (36, 37) are a shorthand notation 

representing the system of equations that construct our 

MDM equation. However, longhand notation will better 

demonstrate how (36) maps to a system of equations. We 

express (36) by a set of two the Riemann sums over kx 

and ky: 
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We can now write the MDM from (38, 39) to solve 

directly for
~

TE  with no need to invoke a Fourier 

transform. In doing so, each value of υ represents a 

different waveguide mode corresponding to the MDM 

row index. Each value of υ also represents a discrete 

index of kx and ky corresponding to the MDM column 

index. This creates a square matrix with a total of L 

samples of kx and ky as well as L modes. 

Note from (22) that ( )  still includes an xo and 

yo vector dependence. If we let, 
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' '

' '

Y T T

T TT o

M k e k

Z A h k E k y

   

   


 




   

 

, (43) 

then we populate the MDM equation using (40-43) and 

a matrix of four LxL quadrants: 

 
 

 

~

~

' ' ' ' 2 ' '

2 '' '

xX Y T N

NX Y
y T

M M E k

M M
E k

   

 






 
    

     
      

, (44) 

 

   

   

1 1 1

1

' ' ' '

' '

' ' ' '

x T x TL

X

Lx T Lx TL

M k M k

M

M k M k



 
 

  
 
 

, (45) 

 

   

   

1 1 1

1

' ' ' '

' '

' ' ' '

y T y TL

Y

Ly T Ly TL

M k M k

M

M k M k



 
 

  
 
 

, (46) 
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   

   

1 1 1

1

' '

'

' '

x T x TL

X

Lx T Lx TL

M k M k

M

M k M k



 
 

  
 
 

, (47) 

 

   

   

1 1 1

1

' '

'

' '

y T y TL

Y

Ly T Ly TL

M k M k

M

M k M k



 
 

  
 
 

, (48) 

      
~ ~ ~

1 1

T

x xLT T TLxE k E k E k

 
  
 

, (49) 

      
~ ~ ~

1 1

T

y yLT T TLyE k E k E k

 
  
 

, (50) 

  2 ' ' 2 0 0
T

N  , (51) 

  2 ' 0 0 0
T

N  . (52) 

Quadrant M’’υX corresponds to elements that 

represent TE modes in the xo direction, quadrant M’’υY 

corresponds to elements that represent TE modes in  

the yo direction, quadrant M’υX corresponds to elements 

representing TM modes in the xo direction, and quadrant 

M’υY corresponds to elements representing TM modes in 

the yo direction. We separate the xo components and yo 

components to obtain individual solutions to 
~

( )TxE k   

and 
~

( )TyE k   at z=0. Each MDM quadrant is LxL in 

dimension yielding a 2Lx2L matrix. The solutions to 
~

( )Tx kE   and 
~

( )Ty kE   are size L column vectors. The 

right hand side column vector of equation (44) is zero 

except for the first element that corresponds to the 

propagating TE10 mode.   

As with any numerical approximation to a 

continuous function, L must be large enough to ensure 

an accurate representation of the original function. 

However, a large L necessitates using many weak 

attenuating modes in the MDM equation. This leads to a 

singular matrix, which is not invertible. Therefore, in 

solving (44) we must use singular value decomposition 

(SVD) to determine the inverse of the MDM [10]. 

When using the SVD method the number of singular 

values used to generate the inverse of the MDM in (44) 

plays a crucial role. A matrix with dimensions 2Lx2L 

will have 2L singular values. Many of the singular values 

will have magnitudes approaching zero. The calculation 

should not use these values or they will skew the 

accuracy of the numerical results. On the other hand, if 

you have multiple singular values with large magnitudes 

then eliminating any of them will also skew the results. 

Figure 2 shows the singular values in descending order 

for a 24-mode MDM calculation. The number of singular 

values used for this particular calculation is 5. 

 
 

Fig. 2. Plot of singular values of a 24 mode MDM in 

descending order. 
 

B. Representation of kx and ky outside the waveguide 

This section describes how to represent the values 

of kx and ky in the MDM equation. Since it is desirable to 

represent the radiated far field in spherical coordinates 

(r, θ, ϕ), we must map kx and ky to spherical coordinates 

to use in the stationary phase calculation. 

The far field stationary phase approximation is well 

known and widely used throughout the literature [6, 11]. 

We repeat the equation here for convenience: 

 

 
~ ~

~ ~

, , cos sin
2

cos sin cos

jkr

x yo

x y
o

ke
E r j E E

r

E E

    


   

   
  

 

 
   

 

. (53) 

Mapping kx and ky to spherical coordinates yields: 

  sin cos( )k k
x o

  , (54) 

    sin sink k
y o

  . (55) 

In order to get a hemisphere mapping of the radiated 

electric field in the positive propagation direction, we are 

interested in -π/2≤θ≤π/2 and 0≤ϕ≤π/2. After substituting 

these values of θ and ϕ into (54, 55), we get a trajectory 

of kx and ky inside a circle of radius ko as shown in Fig. 3 

and Fig. 4. 

Figure 3 shows all the kx and ky values obtained for 

ϕ=0 and Δθ=1/L where L corresponds to the size of each 

quadrant in (44). The angle of ϕ is represented in Fig. 3 

as the angle between the kx and ky axes. Since ϕ=0, all the 

kx and ky values fall on the ky=0 axis. If we use ϕ=π/4 to 

calculate kx and ky as in Fig. 4, then we see that the values 

of kx and ky fall on a trajectory that makes an angle of π/4 

with the ky=0 axis. 

Note that in both Figs. 3 and 4 an equal spacing 

between values of θ does not result in an equal spacing 

in kx and ky. In addition, any value of kx and ky that falls  
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on the ko radius yields a value of |kT| = ko which 

corresponds to κ=0. Any value of kx and ky that falls 

beyond the ko radius corresponds to an imaginary value 

of κ. These values represent attenuating modes. 

 

 
 

Fig. 3. Plot of kx and ky obtained for ϕ=0. 
 

 
 

Fig. 4. Plot of kx and ky obtained for ϕ= π/4. 

 

IV. ANALYSIS AND COMPARISON TO 

SIMULATION 
We compare the far field patterns and return loss at 

the air-interface boundary of the waveguide calculated 

from the MDM method to those generated using 3D EM 

modeling software. We performed the MDM calculations 

using Matlab 2017a and simulations with CST Studio 

Suite 2017 for comparison. 

 

A. Computer model 

The transverse dimensions of the waveguide are λo/2 

in the xo direction at 200 megahertz (MHz) and λo/4 in 

the yo direction.  As long as a ≥ 2b in Fig. 1, the dominant 

mode will be the TE10 mode [9]. The propagation of  

the dominant mode begins at fc=200 MHz and the 

propagation of the second mode begins at 2fc=400 MHz. 

For frequencies below 200 MHz no modes will propagate 

in the waveguide, and for frequencies above 400 MHz 

more than one mode will propagate.    

The distribution of the propagating TE10 mode 

generated by a matched waveguide port is a cosine 

distribution across the waveguide with units of volts per 

meter (V/m). This is the expected mode distribution for 

the TE10 mode [9]. The mode distribution peaks and is 

symmetric about the center of the transverse plane of the 

waveguide. The mode distribution does not vary in the 

zo direction because it is a propagating mode. 

 

B. MDM results and comparison 

The calculations and simulations of the far field 

radiation patterns are determined for a frequency of 300 

MHz. We chose this frequency because it stands far 

away from both fc and 2fc. Figure 5 shows the far field 

patterns of Eθ and Eϕ plotted in polar coordinates, and 

Fig. 6 shows the same patterns plotted in Cartesian 

coordinates. Figure 7 shows a calculation of the return 

loss based on the reflection of the TE10 mode at the air 

interface of the flanged rectangular waveguide. 

 

 
 

Fig. 5. Polar plot of the normalized Eθ and Eϕ patterns. 
 

 
 

Fig. 6. Cartesian plot of the normalized Eθ and Eϕ 

patterns. 
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Fig. 7. Plot of return loss versus frequency for the TE10 

mode at the waveguide air-interface boundary. 
 

These calculations all assume an air-filled 

waveguide. The results show excellent agreement 

between the results of the MDM method and those 

generated by CST. In particular, the return loss at the 

boundary shown in Fig. 7 demonstrates the accuracy of 

the mode coefficients calculated using the MDM method 

to generate these results. 
 

V. CONCLUSION 
Traditional methods for analysis of the EM fields at 

the aperture of an infinitely flanged radiating rectangular 

waveguide require the computation of the Fourier transform 

of the EM fields prior to use of stationary phase. These 

approaches introduce additional computational costs to 

performing calculations of radiated far fields for this type 

of problem. We derive a new approach called the MDM 

method that allows for the direct computation EM fields 

at the aperture in the Fourier domain, which eliminates 

the need to make additional computations to obtain the 

Fourier transform. The result is a matrix equation that 

directly solves for the Fourier components needed for  

the far field stationary phase calculations. The results of 

the MDM method are in agreement with the far field 

radiation patterns and return loss versus frequency of  

an infinitely flanged radiating rectangular waveguide 

generated by CST. The high fidelity of agreement 

validates the accuracy of the less computationally 

expensive MDM formulation. 
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