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Abstract ─ The discontinuous Galerkin finite-element 

time-domain (DG-FETD) method with the ability to 

deal with unstructured meshes is well suited to analyze 

the multiscale system. However the DG-FETD method 

with explicit integration schemes is constrained by 

stability conditions that can be very restrictive upon 

highly fine meshes. The hybrid implicit–explicit Crank-

Nicolson (CN) leapfrog scheme is effective in solving 

this problem; but because of using CN scheme, the 

inversion of a large sparse matrix must be calculated at 

each time step in the fine regions. The hybrid implicit–

explicit iterative CN leapfrog scheme is introduced to 

improve the computational efficiency which can form a 

block diagonal matrix. The leapfrog scheme is employed 

for electrically coarse regions and iterative CN scheme 

for electrically fine ones. The numerical examples have 

demonstrated the validity and efficiency of the method. 

 

Index Terms ─ Crank-Nicolson, discontinuous Galerkin 

finite-element time-domain method, multi-scale.  
 

I. INTRODUCTION 
When handling the multiscale electromagnetic 

simulations in transient electromagnetic analysis, such 

as electromagnetic interference and electromagnetic 

compatibility problems, traditional methods face great 

challenges because of small size meshes in the fine 

regions. The finite-element time-domain (FETD) method 

is widely used because of its flexibility in geometric 

modeling, but it must calculate a large sparse matrix 

inversion at each time step [1]. Then the discontinuous 

Galerkin method has been proposed and combined  

with the FETD method called discontinuous Galerkin 

finite-element time-domain (DG-FETD) method [2]-[4]; 

Numerical fluxes are introduced to impose the tangential 

continuity of the electrical and magnetic fields at the 

interfaces between adjacent elements. Central flux [5, 

6] and upwind flux [7, 8] are the commonly used ways. 

The explicit leapfrog scheme for DG-FETD method can 

make the mass matrix block-diagonal and it is convenient 

for matrix inversion and parallel computing rather than 

solve a huge matrix system as conventional FETD 

method [9-12]. But the size of the time step of the 

explicit leapfrog DG-FETD is limited by the spatial 

discretization of the simulation domain according to  

the CFL condition which will lead to produce a large 

number of simulation steps and reduce the computation 

efficiency. Generally, a discretized multiscale system 

usually contains both electrically coarse meshes and 

fine meshes. Because of the constraint of Courant-

Friedrichs-Levy (CFL) stability condition [13], the time 

step increments for electrically fine meshes may be much 

less than those for electrically coarse meshes when the 

explicit leapfrog time integration scheme is employed. 

According to this circumstance, hybrid implicit-explicit 

Crank-Nicolson (CN) leapfrog scheme have been 

proposed to get a higher computational efficiency [14]. 

The implicit CN scheme used in fine regions can make 

the system unconditionally stable but also require solving 

large matrices equations which will destroy the original 

powerful ability of DG-FETD. Therefore, an iterative 

CN leapfrog scheme DG-FETD is proposed, which can 

not only make system unconditionally stable but also 

maintain the advantage of DG-FETD. 

In this paper, an iterative CN leapfrog scheme  

is introduced to analyze multiscale electromagnetic 
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problems. The leapfrog scheme is employed for 

electrically coarse regions and iterative Crank-Nicholson 

scheme [15] for electrically fine ones. In the paper,  

an iterative CN leapfrog scheme is first introduced  

with poor convergence. To solve the poor convergence 

problem, a modified iterative CN leapfrog scheme is 

further presented to speed up the convergence. 

The paper is organized as follows. The basic theory 

and formulations of the hybrid implicit–explicit iterative 

CN leapfrog scheme for DG-FETD is presented in 

Section II. The numerical results are given to demonstrate 

the validity of proposed method in Section III, and the 

conclusion is drawn in Section IV. 

 

II. THEORY AND FORMULATIONS 

A. DG-FETD spatial semi-discrete formulation 

The implementation steps of the DG-FETD method 

include choice of the governing equation, grid 

discretization and imposing the tangential continuity  

of the electrical and magnetic fields at the interfaces 

between adjacent elements. In this paper, first order 

Maxwell’s curl equations based on E and H are 

employed and the model is discretized by tetrahedral 

meshes, central flux scheme is employed. Considering 

the time-dependent Maxwell’s curl equations for a 

linear, lossless, isotropic and non-dispersive medium, 

the electric field E and the magnetic field H can be 

described as: 

 
t




 


E
H , (1) 

 
t




 


H
E , (2) 

where   represents the permittivity and   denotes the 

permeability. The electric and magnetic fields can be 

expanded by Whiney edge elements [16] as: 

 ,     .ej j hj jj j
e h  E W H W  (3) 

The curl-conforming vector basis functions ejW  and 

hjW  are chosen to discretize the E field and H field 

respectively. Then je and jh  are the unknown coefficients. 

The Galerkin’s weak forms of Maxwell’s equations can 

be described as: 

( ) ,ei ei ei
V V S

dV dV dS
t




      
   n
E

W W H W H  

 (4) 

( ) .hi hi hi
V V S

dV dV dS
t




      
   n
H

W W E W E

 (5) 

The central flux is employed for each element to 

impose the tangential continuity of the electric and 

magnetic fields at the interfaces between adjacent 

elements and the expression is: 

 
1

( )
2V

V






   n nH H H , (6) 

 
1

( )
2V

V






   n nE E E , (7) 

where E and H represent the electric and magnetic 

fields of the elements within sub-domain V, +
E  and 

+
H  represent electric and magnetic fields of the 

adjacent elements within the neighboring sub-domain 

V+. By substituting (6) and (7) into (4) and (5), the 

final spatial semi-discrete DG-FETD formulations can 

be converted into a matrix equation as follows:  

 
ee eh eh

t


 


T P S

e
h h , (8), 

 
hh he he

t


 


T P S

h
e e , (9) 

where 
eeT , 

hhT , 
ehP , 

heP , eh


S  and he


S  are the sparse 

matrices, e and h are the unknown vectors. The matrix 

elements are defined as: 

 [ ]ee ij ei ej
V

dV T W W , 

 [ ]hh ij hi hj
V

dV T W W , 
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[ ]
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dV dS      P nW W W W , 

 
1

[ ]
2

he ij hi ej hi ej
V S
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1

[ ]
2

eh ij ei hj
S

dS   S nW W , 

 
1

[ ]
2

he ij hi ej
S

dS    S nW W . 

 

B. Iterative CN-leapfrog scheme 

When dealing with multiscale electromagnetic 

problems, very small size meshes will appear in fine 

regions of the model. Though explicit leapfrog scheme 

of the DG-FETD method makes the mass matrix block-

diagonal and it is convenient for matrix inversion and 

parallel computing. But the size of the time step of the 

explicit leapfrog DG-FETD is limited by the spatial 

discretization of the simulation domain according to the 

CFL condition which lead to produce a large number of 

simulation steps and reduce the computation efficiency. 

In contrast, the implicit time step schemes are proved to 

be unconditionally stable with large time step intervals 

but require solving large matrix equations. Therefore, 

hybrid implicit-explicit CN leapfrog scheme can be 

attractive in multi-scale electromagnetic simulations. 

However, the implicit-explicit CN leapfrog DG-FETD 

lost the block diagonal characteristic because of using 

implicit CN scheme which lead to a mass matrix of 

DG-FETD. In this section, an iterative CN Leapfrog 

scheme is proposed to deal with the above problems  
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which can not only maintain the block diagonal 

characteristic of the DG-FETD method but also improve 

the computational efficiency.  

The proposed hybrid iterative CN Leapfrog scheme 

divides the whole computational domain into the coarse 

region marked by region 1 and the fine region marked 

by region 2, [1]. In region 1, explicit leapfrog scheme is 

employed to DG-FETD method and the Eq. (8), Eq. (9) 

above can be changed into: 

 

1 1

2 2 1
( )

2

n n

n n n

hh he he he

h h
e e e

t

 


  


T P S S , (10) 
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2 2 2
1
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2
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ee eh eh eh

e e
h h h

t


  


  


T P S S . (11) 

Where t  represents the time step size and can be 

expressed as: 

 min

2

max2 (p 1)

h
t

v
 


, 

where minh  is the minimum length of the mesh, maxv  is 

the propagation speed of the wave in the object, P is the 

order of the base function. 

In region 2, iterative CN scheme is applied to DG-

FETD method and the Eq. (8), Eq. (9) can be expressed 

as: 
1 1 1 1

+ ,
2 2 2

n n n n n n n nh h e e e e e e

t

      
      


hh he he he

T P S S

 (12) 
1 1 1 1

+ .
2 2 2

n n n n n n n ne e h h h h h h

t

      
      


ee eh eh eh

T P S S

 (13) 

The proposed scheme can be described by the 

following steps: 

Step 1. Assume that the correct overall distribution of 

the electromagnetic fields at the time of n t  is 

known. 

Step 2. In region 1, the leapfrog scheme for DG-FETD 

as Eq. (10) and Eq. (11) calculate the electric 

and magnetic fields at the time of 
1

( )
2

:tn   
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Step 3. In region 2, CN scheme for DG-FETD as Eq. 

(12) and Eq. (13) calculate the electric and 

magnetic fields at the time of ( ) :1n t   
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T

P S S S
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Equation (15) can be converted into a matrix 

equation: 
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because +

eh2
S  and +

he2
S  present the matrices of the 

adjacent element in region 2 which destroy the block 

diagonal characteristic of the mass matrix, +

eh2
S  and 

+

he2
S  are moved to the right-hand side of the equation to 

ensure the mass matrix of  the left-hand side is a block 

diagonal matrix: 
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The linear system of Eq. (17) will be solved 

iteratively and can be expressed as:  

 
       1 1

, 1 ,

n n n n

i k i j j ku u u u 
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1 2 3

T S S S , 
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where subscript i represents the ith element, j represents 

the jth adjacent element, subscript k denotes the kth 

iteration. The initial value of 1

,0

n

ju   in the right hand side 

of the equation is set to be the previous time step value 
n

ju  as 1

,0

n n

j ju u  . After a few iterations for the solution of 

the 1

, 1

n

i ku 


, the error can be acceptable and then go to the 

next step . 

Iterative number for convergence determines the 

speedup effect of the method during the implementation. 

In this paper, the global iterative method is first proposed. 

By one-time iteration, all of the unknowns are obtained 

and compared with the results in the previous step. Root 

mean square error (RMSE) is calculated to determine 

whether the iteration is over or not. If the iteration is 

over, it will go to the next step. However, this method 

we first proposed with disadvantage of poor convergence 

performance will lead to increasing the iterative steps 

and enlarge the time step size. To solve this problem, a 

modified iterative CN method is further proposed. For 

this method, electromagnetic fields of each element are 

calculated by iteration and are updated immediately 

until all the elements are calculated and updated. Then 

RMSE is calculated. The procedure of the two proposed 

methods is given as Fig. 1 below. 

Step 4. In region 1, CN scheme is employed in Eq. (6) 

and Eq. (7) to calculate the electric and magnetic 

fields at the time of ( 1)n t  : 
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  (a) 

Start

i=0

i<NNo

Calculate the unknown of 

the ith element at (n+1)     

by iteration

Yes

Calculate the 

relative error S 

between 

and t No

End

Yes

i++

1 5 S e

1n
u

n
u

 
 (b) 

 

Fig. 1. (a) Flow chart of the iterative CN scheme, and (b) 

flow chart of the modified iterative CN scheme. 

 

III. NUMERICAL RESULTS AND 

DISCUSSION 

In order to verify the accuracy and efficiency of the 

proposed method, two numerical examples are analyzed. 

The first example is a rectangular cavity with the size  

of 10mm×5mm×15mm. The number of the discretized 

tetrahedron is 1771 and the number of unknowns is 

19015 and the time step size is -131.17 10 s which is 

five times as large as that of the leapfrog scheme. A 

modulated Gaussian pulse is selected as the excitation 

and the center frequency is 18GHz. The convergence 

speed is compared between iterative CN DG-FETD  

and modified iterative CN DG-FETD when both of the 

methods require 500 time steps. As shown in Fig. 2,  

the modified iterative CN DG-FETD can speed up the 

convergence effectively. The parameters of CN DG-

FETD and iterative CN DG-FETD are also compared as 

shown in Table 1, which further demonstrates that the 

convergence speed of modified iterative CN method is 

superior to the iterative CN method and computational 

time of modified iterative CN method is much less than 

CN method. 

The second example is a metal cylinder cavity 

loaded with a dielectric cylinder as shown in Fig. 3. The 

radius of the metal cylinder is 0.5m and the height is 

1m .The radius of the dielectric cylinder is 0.05m, the 
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height is 0.02m and the relative permittivity is 4.0. A 

modulated Gaussian pulse is selected as the excitation 

in y direction with the center frequency of 230MHz. The 

number of the total discretized tetrahedron is 8464. The 

number of unknowns is 96089 with 14005 unknowns for 

the fine domain using CN method and 82084 unknowns 

for coarse domain using leapfrog method. The time step 

size is 1.33 10-11s which is twice leapfrog time step 

size, Fig. 4 represents the transient scattering fields with 

two different method. Good agreement can be shown 

from the results obtained by the above different ways. 

Furthermore, Table 2 exhibits computational cost of the 

above different methods which further demonstrate the 

efficiency and accuracy of the proposed method. 
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Fig. 2. Comparison of the convergence speed between 

two methods. 

 

Table 1: Comparison of computational efficiency 

Method 

Number of 

Unknowns 

(CN) 

Number of 

Unknowns 

(Leapfrog) 

Iterative 

Steps 

Iterative 

Time(s) 

CN-leapfrog 14005 82084 5000 1104 

Iterative 

CN-leapfrog 
14005 82084 5000 650 
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4 0  .
r

x

yz

 
 

Fig. 3. A metal cylinder cavity loaded with a dielectric 

cylinder. 
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Fig. 4. Electric field in time domain calculated by the 

two methods. 

 

Table 2: Comparison of computational efficiency 

Iterative 
Method 

Amplification 

of Time 

Step 

Mean 

Convergence 

Step 

Iterative 

Time(s) 

CN 5 0 600 

Iterative CN 5 35 415 

Modified 

Iterative CN 
5 13 173 

 

IV. CONCLUSION 
In the paper, a hybrid explicit-implicit iterative CN-

leapfrog scheme based DG-FETD method is proposed 

for analysis of multiscale problems. The scheme divides 

the whole computational domain into two types. The 

iterative CN scheme is used in the fine regions while 

the leapfrog scheme is used in the coarse regions. 

Compared with the existing CN scheme and CN-

leapfrog scheme, our scheme can not only enlarge the 

time step size but also ensure the mass matrix with the 

block diagonal characteristic. Numerical results show 

the accuracy and efficiency of the proposed iterative 

CN-leapfrog scheme DG-FETD. 
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