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Abstract ─ In this work a Yee’s mesh based full vectorial 

transverse finite difference frequency (FDFD) modesolver 

has been derived from discretized Maxwell’s equations 

in Matrix form for anisotropic waveguides with arbitrary 

permittivity and permeability tensors. This work 

incorporates arbitrary permittivity and permeability 

simultaneously into matrix equations of Yee’s mesh 

based modesolver, which previous works have not done. 

For benchmarking the Python implementation of these 

matrix equations, cross section of Yittrium Iron Garnate 

(YIG) channel waveguide has been taken as first one of 

the three test structures. Numerical result from this work 

has been compared with that from previous work on YIG 

channel waveguide and is found to be in good agreement. 

Further, for benchmarking the effective index values of 

waveguides having both permittivity and permeability 

anisotropic simultaneously, a finite element based 

commercial software (COMSOL) has been used, the 

values of effective indexes from solver presented in this 

work and commercial software have been compared, and 

are also found to be in good agreement.  

 
Index Terms ─ Anisotropic waveguides, finite difference 

frequency domain, full vectorial, modesolver. 

 

I. INTRODUCTION 

Despite finite difference time domain (FDTD) 

method being the most general purpose and robust 

method for simulation of Nanophotonic and Integrated 

Optic devices, finite difference frequency domain (FDFD) 

method is also very useful in solving some Nanophotonic 

and Integrated Optic problems such as single mode 

verification, coupling length calculations etc. Moreover 

the mode field solutions obtained from a Yee’s mesh 

based FDFD modesolver are more compatible with 

Yee’s mesh based propagation methods for the purpose 

of mode launching. The previous works on transverse 

FDFD modesolvers [1-5] have not incorporated arbitrary 

permittivity and permeability tensors simultaneously 

into their formulation but this work incorporates arbitrary 

permittivity and permeability tensors simultaneously 

into formulation of FDFD based transverse modesolver. 

In order to benchmark accuracy of the solver, 

numerically calculated effective index from the solver 

presented here has been compared with effective index 

given in [4] for Yttrium Iron Garnate (YIG) channel 

waveguide. Moreover effective indexes of waveguides 

having both permeability and permeability anisotropic 

simultaneously have also been calculated and compared 

with values given by finite element based commercial 

software [6].  
 

II. THEORY AND MATRIX 

FORMULATIONS 
While deriving the matrix equations for modesolver 

the convention for naming variables is same as in [5]. 

The Maxwell’s equations are written assuming 𝑒𝑖(𝛽𝑧−𝜔𝑡) 

dependence (where β = 2π
𝑁𝑒𝑓𝑓

𝜆
  and 𝑘0 = 2π/𝜆, with λ 

being free space wavelength) which leads to 
𝜕

𝜕𝑧
= 𝑖𝛽 and 

𝜕

𝜕𝑡
= −𝑖𝜔. 𝑁𝑒𝑓𝑓  contains both real and imaginary part of 

scaled eigen solution (scaled by λ/2π). The real part of 

this solution is denoted by 𝑛𝑒𝑓𝑓 (effective index), also 

electric fields are scaled by the impedance of free space. 

Further all permittivity and permeability values used 

here are relative.  

The Maxwell’s equations with above conditions 

applied are: 

 𝑖𝑘0𝜀𝑥𝑥𝐻𝑥 + 𝑖𝑘0 𝜀𝑥𝑦𝐻𝑦 + 𝑖𝑘0𝜀𝑥𝑧𝐻𝑧 =
𝜕𝐸𝑧

𝜕𝑦
− 𝑖𝛽𝐸𝑦, (1) 

 𝑖𝑘0𝜇𝑦𝑥𝐻𝑥 + 𝑖𝑘0𝜇𝑦𝑦𝐻𝑦 + 𝑖𝑘0𝜇𝑦𝑧𝐻𝑧 = 𝑖𝛽𝐸𝑥 −
𝜕𝐸𝑧

𝜕𝑥
, (2) 

 𝑖𝑘0𝜇𝑧𝑥𝐻𝑥 + 𝑖𝑘0𝜇𝑧𝑦𝐻𝑦 + 𝑖𝑘0𝜇𝑧𝑧𝐻𝑧 =
𝜕𝐸𝑦

𝜕𝑥
−

𝜕𝐸𝑥

𝜕𝑦
, (3) 

 −𝑖𝑘0𝜀𝑥𝑥𝐸𝑥 − 𝑖𝑘0𝜀𝑥𝑦𝐸𝑦 − 𝑖𝑘0𝜀𝑥𝑧𝐸𝑧 =
𝜕𝐻𝑧

𝜕𝑦
− 𝑖𝛽𝐻𝑦 , (4) 

 −𝑖𝑘0𝜀𝑦𝑥𝐸𝑥 − 𝑖𝑘0𝜀𝑦𝑦𝐸𝑦 − 𝑖𝑘0𝜀𝑦𝑧𝐸𝑧 = 𝑖𝛽𝐻𝑥 −
𝜕𝐻𝑧

𝜕𝑥 
, (5) 

 −𝑖𝑘0𝜀𝑧𝑥𝐸𝑥 − 𝑖𝑘0𝜀𝑧𝑦𝐸𝑦 − 𝑖𝑘0𝜀𝑧𝑧𝐸𝑧 =
𝜕𝐻𝑦

𝜕𝑥
−

𝜕𝐻𝑥

𝜕𝑦
, (6) 

Now discretizing the fields in above equations in 

accordance with Yee’s meshing scheme, the fields can 
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be represented as, 𝐸𝑥 → 𝐸𝑥(j+1/2, l), 𝐸𝑦 → 𝐸𝑦(j, l+1/2), 

𝐸𝑧  → 𝐸𝑧(j, l), 𝐻𝑥  → 𝐻𝑥(j, l+1/2), 𝐻𝑦 → 𝐻𝑦(j+/12, l), 

𝐻𝑧 → 𝐻𝑧(j+1/2, l+1/2). Now writing the discretized 

Maxwell’s equations into matrix form (with bold symbols 

representing matrix variables) leads to: 

 𝑖𝑘0 [

𝝁𝒙𝒙 𝝁𝒙𝒚 𝝁𝒙𝒛

𝝁𝒚𝒙 𝝁𝒚𝒚 𝝁𝒚𝒛

𝝁𝒛𝒙 𝝁𝒛𝒚 𝝁𝒛𝒛

] [

𝑯𝒙

𝑯𝒚

𝑯𝒛

] =

  [

𝟎 −𝑖𝛽𝑰    𝑼𝒚

𝑖𝛽𝑰 𝟎 −𝑼𝒙

−𝑼𝒚 𝑼𝒙 𝟎
] [

𝑬𝒙

𝑬𝒚

𝑬𝒛

], (7) 

 −𝑖𝑘0 [

𝜺𝒙𝒙 𝜺𝒙𝒚 𝜺𝒙𝒛

𝜺𝒚𝒙 𝜺𝒚𝒚 𝜺𝒚𝒛

𝜺𝒛𝒙 𝜺𝒛𝒚 𝜺𝒛𝒛

] [

𝑬𝒙

𝑬𝒚

𝑬𝒛

] =

   [

𝟎 −𝑖𝛽𝑰    𝑽𝒚

𝑖𝛽𝑰 𝟎 −𝑽𝒙

−𝑽𝒚 𝑽𝒙 𝟎
] [

𝑯𝒙

𝑯𝒚

𝑯𝒛

], (8) 

In the above matrix Eqs. (7) and (8), 𝜺𝒙𝒙, 𝜺𝒚𝒚, … and 

𝝁𝒙𝒙, 𝝁𝒚𝒚, … are all diagonal square matrices with diagonal 

size equal to the number of field computation points in 

the simulation window. 𝑼𝒙, 𝑼𝒚, 𝑽𝒙 and 𝑽𝒚 are Yee’s 

mesh based differential operators in sparse square matrix 

form, the size of these matrices is equal to square of the 

number of field computation points in the simulation 

window. For this work 𝑼𝒙 and 𝑼𝒚 are given by Eqs. (9) 

and (10) respectively, 𝑽𝒙 and 𝑽𝒚 can be derived from 𝑼𝒙 

and 𝑼𝒚 respectively, by transferring the smaller diagonal 

to lower triangular region while keeping the offset from 

the main diagonal unchanged, followed by change of 

sign in both diagonals. Here the offset in 𝑼𝒙 is one and 

in  𝑼𝒚, it is equal to number of field computation points 

along 𝑥 direction. The above matrices have also been 

described in [6]: 

 𝑼𝒙 =
1

∆𝑥

























1

11

, (9) 

 𝑼𝒚 =
1

∆𝑦

























1

11

, (10) 

𝑬𝒙, 𝑬𝒚, 𝑬𝒛 and  𝑯𝒙, 𝑯𝒚, 𝑯𝒛 are field matrices which 

contain the mode field values and their size is equal to 

the number of field computation points in the simulation 

window. It is worth mentioning here that the number of 

field computation points will be dictated by discretizations 

∆𝑥 and ∆𝑦 in 𝑥 and 𝑦 directions respectively. Further  

the field matrices have been stored in row-major order. 

After careful algebraic manipulations (substitutions & 

eliminations) on matrix Eqs. (7) and (8), they get reduced 

to Eigen equation given by Eq. (11). It is worth 

mentioning here that Eqs:  

 𝛽

[
 
 
 
𝑬𝒙

𝑬𝒚

𝑯𝒙

𝑯𝒚]
 
 
 

= [

𝑭𝟏𝟏 𝑭𝟏𝟐 𝑭𝟏𝟑

𝑭𝟐𝟏 𝑭𝟐𝟐 𝑭𝟐𝟑

𝑭𝟑𝟏

𝑭𝟒𝟏

𝑭𝟑𝟐

𝑭𝟒𝟐

𝑭𝟑𝟑

𝑭𝟒𝟑

    

𝑭𝟏𝟒

𝑭𝟐𝟒

𝑭𝟑𝟒

𝑭𝟒𝟒

]

[
 
 
 
𝑬𝒙

𝑬𝒚

𝑯𝒙

𝑯𝒚]
 
 
 

, (11) 

where 
 𝑭𝟏𝟏 = 𝑖𝝁𝒚𝒛(𝝁𝒛𝒛)

−1𝑼𝒚 + 𝑖𝑼𝒙 (𝜺𝒛𝒛)
−1𝜺𝒛𝒙, (12) 

 𝑭𝟏𝟐 = −𝑖𝝁𝒚𝒛(𝝁𝒛𝒛)
−1𝑼𝒙 + 𝑖𝑼𝒙 (𝜺𝒛𝒛)

−1𝜺𝒛𝒚, (13) 

 𝑭𝟏𝟑 = 𝑘0𝝁𝒚𝒙 − 𝑘0𝝁𝒚𝒛(𝝁𝒛𝒛)
−1𝝁𝒛𝒙  −

                                           (𝑘0)
−1𝑼𝒙 (𝜺𝒛𝒛)

−1 𝑽𝒚, (14) 

 𝑭𝟏𝟒 = 𝑘0𝝁𝒚𝒚 − 𝑘0𝝁𝒚𝒛(𝝁𝒛𝒛)
−1𝝁𝒛𝒚 +

                                          (𝑘0)
−1𝑼𝒙 (𝜺𝒛𝒛)

−1 𝑽𝒙, (15) 

 𝑭𝟐𝟏 = −𝑖𝝁𝒙𝒛(𝝁𝒛𝒛)
−1𝑼𝒚 + 𝑖𝑼𝒚(𝜺𝒛𝒛)

−𝟏𝜺𝒛𝒙, (16) 

 𝑭𝟐𝟐 = 𝑖𝝁𝒙𝒛(𝝁𝒛𝒛)
−1𝑼𝒙 + 𝑖𝑼𝒚(𝜺𝒛𝒛)

−1𝜺𝒛𝒚, (17) 

 𝑭𝟐𝟑   = −𝑘0𝝁𝒙𝒙   + 𝑘0𝝁𝒙𝒛(𝝁𝒛𝒛)
−1 𝝁𝒛𝒙  −

                                                 (𝑘0)
−1𝑼𝒚(𝜺𝒛𝒛)

−1𝑽𝒚, (18) 

 𝑭𝟐𝟒   = −𝑘0𝝁𝒙𝒚   + 𝑘0𝝁𝒙𝒛(𝝁𝒛𝒛)
−1 𝝁𝒛𝒚 +

                                                (𝑘0)
−1𝑼𝒚(𝜺𝒛𝒛)

−1𝑽𝒙, (19) 

 𝑭𝟑𝟏   = −𝑘0𝜺𝒚𝒙   + 𝑘0𝜺𝒚𝒛(𝜺𝒛𝒛)
−1 𝜺𝒛𝒙 +

                                               (𝑘0)
−1𝑽𝒙(𝝁𝒛𝒛)

−1𝑼𝒚, (20) 

 𝑭𝟑𝟐   = −𝑘0𝜺𝒚𝒚   + 𝑘0𝜺𝒚𝒛(𝜺𝒛𝒛)
−1 𝜺𝒛𝒚 −

                                                (𝑘0)
−1𝑽𝒙(𝝁𝒛𝒛)

−1𝑼𝒙, (21) 

 𝑭𝟑𝟑 = 𝑖𝜺𝒚𝒛(𝜺𝒛𝒛)
−1𝑽𝒚 + 𝑖𝑽𝒙 (𝝁𝒛𝒛)

−1𝝁𝒛𝒙, (22) 

 𝑭𝟑𝟒 = −𝑖𝜺𝒚𝒛(𝜺𝒛𝒛)
−1𝑽𝒙 + 𝑖𝑽𝒙 (𝝁𝒛𝒛)

−1𝝁𝒛𝒚, (23) 

 𝑭𝟒𝟏   = 𝑘0𝜺𝒙𝒙  − 𝑘0𝜺𝒙𝒛(𝜺𝒛𝒛)
−1 𝜺𝒛𝒙 +

                                             (𝑘0)
−1𝑽𝒚(𝝁𝒛𝒛)

−1𝑼𝒚, (24) 

 𝑭𝟒𝟐   = 𝑘0𝜺𝒙𝒚  − 𝑘0𝜺𝒙𝒛(𝜺𝒛𝒛)
−1 𝜺𝒛𝒚 −

                                             (𝑘0)
−1𝑽𝒚(𝝁𝒛𝒛)

−1𝑼𝒙, (25) 

 𝑭𝟒𝟑 = −𝑖𝜺𝒙𝒛(𝜺𝒛𝒛)
−1𝑽𝒚 + 𝑖𝑽𝒚 (𝝁𝒛𝒛)

−1𝝁𝒛𝒙, (26) 
 𝑭𝟒𝟒 = 𝑖𝜺𝒙𝒛(𝜺𝒛𝒛)

−1𝑽𝒙 + 𝑖𝑽𝒚 (𝝁𝒛𝒛)
−1𝝁𝒛𝒚, (27) 

(12)-(27) are much more generalized equations than 

previously published works[1-3, 5], as previous works 

on transverse FDFD Yee’s mesh based modesolvers can 

only handle arbitrarily anisotropic permittivity but not 

arbitrarily anisotropic permeability. Moreover this solver 

is also capable of handling anisotropic permittivity and 

permeability simultaneously which previous Yee’s mesh 

based modesolvers have not addressed. The boundary 

conditions currently used assume zero field values 

outside the simulation window. It is worth pointing out 

here that future works based on this work will explore 

incorporation of modern boundary conditions such  

as surface impedance absorbing boundary conditions 

(SIABC) [7] and subgridding [8] for reducing the 

memory requirements for this solver.  

Further it is also worth pointing out here that all 

programs for this work have been written in Python by 

making use of Python-scipy’s (Version – 0.13.3) sparse 

linear algebra eigen value and eigen vector finder (which 

uses ARPACK library) with shift invert mode enabled. The 

wavelength (𝜆) used in channel waveguide simulations 
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is 1.3 µ𝑚, while the wavelength used in the other two 

test cases is 1.55 µ𝑚. 
 

III. RESULTS AND COMPARISONS 
For comparisons and benchmarking the first test 

structure [4], which has been used here is cross section 

of a YIG (Yttrium Iron Garnate) channel waveguide 

placed in air/vacuum with anisotropic rectangular core 

as shown in Fig. 1.  

The anisotropic rectangular core of channel 

waveguide has height of 607.6 nm and is 800 nm wide. 

It has isotropic permeability but its relative permittivity 

tensor has five terms which are – 𝜀𝑥𝑥=𝜀𝑦𝑦=𝜀𝑧𝑧 = 2.3022, 

𝜀𝑥𝑦 = 𝑖∆ and 𝜀𝑦𝑥 = −𝑖∆. The magnitude (∆) of non-

diagonal terms is 0.005. The substrate has isotropic 

refractive index of 1.95(𝑛1)  for this waveguide. For 

effective index calculation a simulation window of 3.2 

µm × 2.9 µm with discretization of 7.5 nm in both 𝑥 and 

𝑦 directions has been used as opposed to 6.25 nm × 4.9 

nm discretization in [4] due to memory constraints but 

future works based on this work will handle this problem 

by utilizing advanced subgridding algorithms such as 

mentioned in [8]. The effective index of fundamental 

mode as given in [4] for the YIG channel waveguide is 

2.0488. The effective index of the same fundamental 

mode as calculated by Yee’s mesh based solver described 

in this work is 2.0483. 

 

 
 

Fig. 1. Permittivity profile and structure of channel 

waveguide with anisotropic core (the central rectangular 

area). 

 

The second test structure which has been used here 

for benchmarking is a rectangular waveguide with 

anisotropic core having a height of 180 nm and width of 

300 nm. This waveguide is surrounded by an isotropic 

medium with relatively permittivity equal to 2.0736(1.442) 

as shown in Fig. 2. This waveguide has both permittivity 

and permeability anisotropic simultaneously with 𝜇𝑥𝑥 =
𝜇𝑦𝑦 =  𝜇𝑧𝑧 =1.0, 𝜇𝑥𝑦 = 𝑖0.2, 𝜇𝑦𝑥 = −𝑖0.2 and 𝜀𝑥𝑥 =

𝜀𝑦𝑦 = 𝜀𝑧𝑧 =12.1104(3.482), 𝜀𝑥𝑦 = 𝑖0.2, 𝜀𝑦𝑥 = −𝑖0.2, 

rest of the terms in relative permittivity and relative 

permeability are zero. 

The simulation window used in simulation of 

anisotropic rectangular waveguide of Fig. 2 with Yee’s 

mesh based modesolver implemented for this work is  

3 µm × 3 µm with a discretization of 15 nm in both 𝑥 

and 𝑦 directions. For benchmarking, commercial finite 

element based software [6] has been used, element size 

in the software has been set at 15 nm and the simulation 

window size has been kept at 3 µm × 3 µm. The effective 

index value of the fundamental mode as given by 

commercial software [6] is 1.7377 while its value given 

by solver implemented for this work in Python is 1.7415. 
 

 
 

Fig. 2. Permittivity profile and structure of rectangular 

waveguide with anisotropic core (the central area). 

 

The third test structure which has been used here for 

benchmarking is a square waveguide with anisotropic 

core having a height of 300 nm and width of 300 nm. 

This waveguide is also surrounded by an isotropic 

medium with relative permittivity equal to 2.0736(1.442) 

as shown in Fig. 3. This waveguide also has both 

permittivity and permeability anisotropic simultaneously 

with 𝝁𝒙𝒙 = 1.5625(1.252), 𝝁𝒚𝒚 = 1.44(1.22), 𝝁𝒛𝒛 =

 1.21(1.12), 𝝁𝒙𝒚 =  𝒊𝟎. 𝟑, 𝝁𝒚𝒙 =  −𝒊𝟎.3, 𝝁𝒙𝒛 = 𝟎. 𝟏𝟓, 

𝝁𝒛𝒙 = 𝟎. 𝟏𝟓, 𝝁𝒛𝒚 = −𝒊𝟎. 𝟐𝟓, 𝝁𝒚𝒛 = 𝒊𝟎. 𝟐𝟓  and 𝜺𝒙𝒙 =

 12.1104(3.482), 𝜺𝒚𝒚 = 10.24(3.22), 𝜺𝒛𝒛 = 9.0(3.02), 

𝜺𝒙𝒚 = 𝒊𝟎. 𝟐, 𝜺𝒚𝒙 = −𝒊𝟎. 𝟐, 𝜺𝒙𝒛 = 0.1, 𝜺𝒛𝒙 = 𝟎. 𝟏, 𝜺𝒚𝒛 =

𝒊𝟎. 𝟏, 𝜺𝒛𝒚 = −𝒊𝟎. 𝟏. 

The simulation window used for Yee’s mesh based 

simulation of the third structure with this solver as well 

as commercial software[6] is same as in the simulation 

of second test structure (3 µm × 3 µm). The 𝑥 and 𝑦 

discretizations for this solver as well as element size in 

commercial software [6] has been kept at 15 nm. The 

effective index value of the fundamental mode as given 

by commercial software [6] is 2.7980, while its value as 

given by solver implemented for this work is 2.8124. Its 

worth pointing out here that the values of terms in 

permittivity and permeability matrices in second and 

SINGH: A FDTD BASED FULL VECTORIAL TRANSVERSE MODESOLVER 808



third test cases above were chosen randomly for the 

purpose of comparison and benchmarking the waveguides 

with both permittivity and permeability anisotropic 

simultaneously. Table 1 sums up the benchmarking for 

this work. 

 
 

Fig. 3. Permittivity profile and structure of square 

waveguide with anisotropic core (the central area). 

 

Table 1: Comparison of effective indexes of anisotropic 

waveguides taken from this work and other sources  

Structure 𝑛𝑒𝑓𝑓 (Other Sources) 𝑛𝑒𝑓𝑓 (This Work) 

Channel 

waveguide 
 2.0483 

Rectangular 

waveguide 
 1.7415 

Square 

waveguide 
 2.8124 

 

IV. CONCLUSION 
In this work a transverse FDFD modesolver which 

can handle arbitrary permittivity as well as permeability 

simultaneously has been implemented in Python. Further 

waveguides with anisotropic core with both permittivity 

and permeability anisotropic simultaneously have also 

been analyzed which the previous works [1-5] on FDFD 

modesolver have not done. The capability to handle 

arbitrarily anisotropic permeability and permittivity 

simultaneously is unique and novel feature of this work. 

Future works based on this work will mainly focus on 

incorporating modern as well as advanced boundary 

conditions [7] and subgridding [8] algorithms in the 

solver. Further combining this solver with modal 

expansion methods will also be explored in the future. 
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