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Abstract ─ An interpolation scheme is put forward to 

accelerate the calculation of free space Green’s function. 

Through theoretical analysis, a universal rule on how to 

build value lists for the phase item of Green’s function 

is discussed. And this rule can guarantee accuracy of 

the interpolation scheme. Accuracy and efficiency of 

the scheme are verified in the calculation of impedance 

matrix for method of moment. Besides, this scheme can 

also be applied to other applications which contain the 

calculation of Green’s functions and is especially useful 

for the analysis of large scale problems. Moreover, this 

scheme can be combined with other existing improved 

approaches of method of moment.  

  

Index Terms ─ Green’s function, impedance matrix, 

interpolation scheme, method of moment. 

 

Green’s function of free space can be viewed as the 

electric field of ideal point source. Thus, it is the basis 

of electromagnetic problems and is frequently used in 

computational electromagnetics [1-4]. In this work, a 

typical application of Green’s function in method of 

moment (MoM) is discussed.  

MoM is a classic frequency-domain algorithm and 

was first applied to the analysis of electric field integral 

equation by Harrington in 1968 [5]. It transforms a 

vector integral equation into a scalar matrix equation by 

two processes called discretization and test. 

The discretization process discretizes the unknown 

vector into a series of basic functions and the test 

process uses a series of test functions to make inner 

products. Usually, to ensure accuracy, a sampling rate 

of λ/10 is required. This makes MoM unsuitable for 

large scale problems due to the limitations on memory 

cost O(N2) and computational complexity O(N3).  

To overcome or improve drawbacks of MoM and 

accelerate the calculation of its impedance matrix, 

several approaches are proposed in the past decades. 

Among which, fast multi-pole method (FMM) and 

multi-level fast multi-pole method (MLFMM) [6-8] 

attracts most attention due to its excellent performance 

in efficiency and accuracy. Apart from FMM/MLFMM, 

other improved approaches such as multilevel matrix 

decomposition algorithm (MLMDA) [9], wavelet-based 

modelling method [10], improved impedance matrix 

localization method (IML) [11], triangular expansion 

method [12], synthetic basis functions method (SBFM) 

[13] and etc. also made great progresses. To summarize, 

these improved approaches accelerate the calculation of 

impedance matrix through mathematical operation.  

Unlike the above, in this work, we put emphasis on 

the calculation of Green’s functions. As is known to all, 

the calculation of Green’s function takes a considerable 

part in the calculation of impedance matrix for MoM. 

Then, considering periodic properties of phase term of 

Green’s function, an interpolation scheme is presented 

to improve the efficiency of the calculation of Green’s 

function. This work first discusses the calculation of 

impedance matrix and analyzes the proportion of 

Green’s function in the total calculation. Then, based on 

the periodic properties of Green’s function, a value list 

for the phase term is built to accelerate the calculation 

process. Moreover, we theoretically analyze and prove 

the determination of the number of segments for the 

value list to acquire a constant accuracy. Efficiency and 

accuracy of the interpolation scheme are validated by 

numerical examples in the calculation of impedance 

matrix for MoM. Notably, this scheme can also be 

perfectly combined other applications those contain the 

calculation of Green’s function as it is an independent 

process.  

 

II. BASIC THEORY 
For PEC bodies, MoM usually bases on the EFIE, 

which can be compactly written as: 
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I. INTRODUCTION 



 ˆ ˆ( ) incn L n  J E , (1) 

Where Einc represents the incident wave, J is the 

surface current, L is the electric integral operator and 

defined as: 
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Usually, Rao-Wilton-Glisson (RWG) functions [14] 

are adopted to discretize (1) and transform it into a 

linear matrix equation: 

 ZI V , (3) 

Where Z={zmn}N×N is the impedance matrix, VN×1 is 

the exciting matrix, and IN×1 is the current coefficients 

matrix of RWG functions. The impedance matrix is 

calculated as (4). 

Where fm(r) is the m-th RWG function, g and k  

is the Green’s function of free space and the wave 

number. 

Equation (4) contains two parts which are computed 

in (5) and (6). Where ρ represents the vector in a couple 

of triangular patches Tn
±, ln is the edge length of the 

common edge of Tn
±, An

± is the areas of Tn
±. These 

symbols are the basic definitions of RWG function, and 

we are not going to introduce them for the sake of 

simplicity. 
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From (5) and (6) we can see that, the calculation of 

Green’s function takes a considerable part of the total 

calculation. For each Zmn, Green’s function needs to be 

calculated 4 times. Thus, for a problem with N RWG 

functions, the scale of impedance matrix will be N2 

which means Green’s function need to be calculated 

4N2 times. Moreover, considering the singularity of 

Green’s function, if nine-point approximation [14] is 

adopted, the calculation of Green’s function will be 

36N2 times. Besides, (5) and (6) indicate the calculation 

of Green’s function is independent of the calculation of 

impedance matrix. Thus, we can obtain the values of 

Green’s functions in advance.  

Green’s function is defined as: 

 ( ) / 4jkRg R e R . (7) 

For brevity, we ignore the constant coefficient of g 

and define h=4πg. h contains two parts: the magnitude 

item 1/R and the phase item e-jkR. We plot the values of 

h changing with R, as shown in Fig. 1. From Fig. 1 we 

can see that values of h exhibit a periodic distribution 

around origin point with the decrease of R. And the 

periodic properties are caused by the phase item e-jkR. 

Considering trajectory of Green’s function’s phase 

item is a circle whose radius is 1. We can discretize the 

trajectory into numerous segments and build a value list 

for each segment, as shown in Fig. 2. With the value 

list, we no longer need to calculate the phase item and 

we can get the value directly from the list according to 

kR. Accuracy of the value list is controlled by the total 

number of segments M. And the larger of M, the higher 

accuracy it will be. To determine the proper number of 

segments M, we do the derivation for h: 
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Fig. 1. Values of Green’s function changing with R. 
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Fig. 2. Trajectory of Green’s function phase item which 

is divided into N segments. 

 

In fact, |dh| represents the absolute error of h which 

is a circle around the real value as shown in Fig. 3 and 

accurate relationship between |dh| and |dR| is shown in 

Fig. 4. 
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Fig. 3. Fake value trajectory of Green’s function. 

 

0 10 20 30 40 50

0

10

20

30

40

50

R

R

R=10.0

R=2.0

R=1.0R=0.5

 

 

|d
h
| (

k=
1
)

|dR|

R=0.1

 
 

Fig. 4. Relationship between |dh| and |dR|. 

However, from (9) we see that |dh| are determined 

by |dR|, k, and R. For a constant |dR| and k, |dh| increases 

with the decrease of R. Extremely, |dh|→|dR|/R2 (R→0). 

Thus, if we need a constant precision of δ, it will be: 
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Then, we can get the number of segments M by: 
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In fact, (11) is unsolvable for if R=0, the number  

of segment M=+∞ which is impossible in reality. 

However, in MoM, to avoid singularity of Green’s 

function, nine-point approximation method is adopted 

which makes the minimum of R is determined by  

the minimum length of edges of triangular patches,  

as shown in Fig. 5. Here, we consider a generalized 

situation: in most occasions, a sampling rate of λ/10 is 

required to ensure the accuracy. It will be: 

 min
3 30

l
R
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  . (12) 
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Fig. 5. Sketch map of nine-point approximation. 

 

Substituting Rmin into (11), we can get the number 

of segments M. And in a specific application, Rmin can 

be obtained from the information of triangulations. 

More significantly, with (11), accuracy of the approach 

can be controlled which is the main contribution of this 

work. Having got the number of segments, we can build 

a value list of Green’s function phase item for each 

segment as shown in Table 1.  

Then, if we want to get the value of a specific 

Green’s function, we no longer need to calculate the 

phase item and can directly get the phase item by 

searching the value list according to the index in (13) 

where operator mod(•) represents getting the remainder 

after division: 

 mod( / 2 )n kR  . (13) 

If n locates in the i-th range of kR, we can directly 

assign e-jkR≈vi. More importantly, the value list is 

independent of the problems we are analyzing and is 

universal for all problems. Thus, we can compute and 

store it in advance; which is helpful for improving 

efficiency, especially for large scale problems. For 

example, in an electromagnetic problem, if there are 
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N=104 RWG functions, the size of impedance matrix 

will be N2=108. For each couple of RWG functions, 

Green’s functions between them need to be calculated 4 

times. Moreover, if nine-point approximation is adopted 

to avoid singularity, there will be more than 36×108 

time calculations of Green’s functions. 
 

Table 1: A value list for the phase item of Green’s function (M0 is the number of segments) 

No. 1 2 … i … M0 

Range of kR [0,2π/M0] [2π/M0,4π/M0] … [2π(i-1)/M0,2πi/M0] … [2π(M0-1)/M0,2π] 

Value v1 v2  vi … vM0 
 

III. NUMERICAL RESULTS 
To validate efficiency and accuracy of the approach, 

we compare the elapsed time and approximation errors 

between direct calculation method and the interpolation 

scheme with working frequency being f=1 GHz and the 

number of segments being M0=1.9×107, as shown in Fig. 

6 and Fig. 7. And from the results we can see that, the 

elapsed time of direct calculation method is about 3.5 

times of the interpolation scheme with approximation 

error of the interpolation scheme being less than 10-6.  
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Fig. 6. Changing tendency of computational time varies 

with the number of calculations. Figures are obtained in 

a 64-bit personal computer whose dominant frequency 

is 3.2 GHz. 
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Fig. 7. Approximation error of the interpolation scheme 

in comparison to direct calculation method. 

This demonstrates that the interpolation scheme not 

only can maintain accuracy but can also improve the 

efficiency to some extent. Especially, the advantages of 

the interpolation scheme become bigger with growth of 

computational scales and this is meaningful for the 

analysis of large scale problems. More appealing, since 

the value list of Green’s function phase item is built on 

the basis of kR, it has taken working frequency into 

consideration which means the value list built for one 

case can be also reused for other applications. And if 

we want to get a higher accuracy, we only need to make 

the value of segments M bigger according to Rmin. 

Then, to further demonstrate efficiency and accuracy 

of the proposed interpolation scheme, we calculate the 

elapsed time in filling impedance matrix for a sphere 

whose radius is 0.3m with working frequency ranging 

from 0.5 GHz to 2.0 GHz. Figure 8 shows the comparison 

between direct calculation method and the proposed 

interpolation scheme. Results exhibit advantages of the 

proposed interpolation scheme in improving efficiency. 

Specifically, for 2.0 GHz, the elapsed time of filling 

impedance matrix is improved about 15% compared to 

direct calculation method. This may seem not to be  

very appealing to us. But, it should be noted that, this 

improvement is obtained only on the calculation of 

Green’s function. And this scheme can be combined 

with other fast calculation methods such as FMM to 

further speed up the solution of MoM matrix. 
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Fig. 8. Elapsed time of filling impedance matrix for a 

sphere whose radius is 0.3m with working frequency 

ranging from 0.5 GHz to 2.0 GHz. Sampling rate of 

triangulation is λ/10. 
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Moreover, we also compare the impedance 

matrices calculated by the proposed interpolation 

scheme and direct calculation method as shown in Fig. 

9. From Fig. 9 we know that, in general, discrepancy 

between the interpolation scheme and direct calculation 

method is close to 0 dB which reflects that the proposed 

scheme has a satisfying accuracy.  
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Fig. 9. Impedance matrix (20log10|Z|) of a sphere whose 

radius is 0.3m with working frequency being 1.25 GHz. 

(a) Direct calculation method; (b) the interpolation 

scheme; (c) discrepancy of (a) and (b): 20log10|Za/Zb|. 

V. CONCLUSION 
An interpolation scheme is proposed to accelerate 

the calculation of Green’s function. Through theoretical 

analysis, we explore the method on how to build a 

universal value list to ensure a constant accuracy and 

this is the main contribution of this work. Finally, via 

numerical examples and the calculation of MoM matrix, 

accuracy and efficiency of the proposed interpolation 

scheme is fully validated. Moreover, the scheme is not 

only limited to the calculation of impedance matrix but 

also suits for all problems including the calculation of 

Green’s functions. 
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