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Abstract ─ The objective of this paper is to propose  

a simplified model of a human body to be used in 

electromagnetic problems involving high frequency field 

scattering. Canonical geometric shapes, analytically 

described, represent the body. The accuracy of the model 

was tested comparing the field scattered by the simplified 

body representation with the one scattered by a more 

realistic phantom. At first, the influence of anatomical 

details of the body was analysed, comparing the 

electromagnetic field reflected by a realistic human head 

with the backscattering of spheres and of an ellipsoid.  

A second test concerns the human body, modelled by 

sphere, parallelepiped and cylinders. In this case, the 

possibility of reconstructing a wideband pulse scattered 

by the whole body with the superposition of pulses 

scattered by its separated parts was demonstrated. Both 

analyses were carried out in the frequency range 3- 

5 GHz using a full wave numerical simulator. 

 

Index Terms ─ Computationally body model, on body 

model, scattering. 
 

I. INTRODUCTION 
The optimal design of contact-less monitoring 

systems of the main human physical and physiological 

activities involves analysis of the interactions between 

the human body and electromagnetic (EM) waves [1,2]. 

These studies are widely carried out by means of 

computer simulations, which are well suited for a careful 

study, but involve the use of detailed human body 

models [3-5]. Most EM solvers perform an automatic 

meshing on the simulated objects, choosing an arbitrary 

number of cells per wavelength. 

Starting from the S-band, the human body becomes 

an electrically large structure, and several cells per 

wavelength are required to model the target and to 

decrease the numerical dispersion error [6-8]. 

This implies simulations that are highly memory and 

time intensive, depending on the body model and the 

frequency of interest [9-11]. 

Several research works have focused on modelling 

simplified human body mannequins to reduce the 

computational burden. Perfectly electric conductor 

cylinders were employed to reproduce the body [12] or 

to predict the effect of people on indoor propagation 

channel [13]. The validation of the models was carried 

out with experimental investigations, comparing the 

signal attenuation between the transmitting and the 

receiving units and antennas located on the simplified 

human model and on a real target. Nevertheless, to our 

knowledge, very few studies have been done to assess 

the characteristics of a body model to be used in scattering 

problems, guaranteeing accuracy and computational 

efficiency at the same time. This issue is dealt with in  

the paper, and an efficient simplified human model is 

accurately analysed. 

In detail, a human body represented by canonical 

geometrical shapes is proposed. It exhibits many 

advantages: 1) all the elements are analytically described; 

2) it is simple and easy to implement; 3) it is very flexible, 

because all postures can be represented; 4) movements 

and animations are possible; 5) it is effective in a wide 

frequency range.  

The accuracy of the model was tested by comparing 

the waveforms of EM pulse, reflected by a realistic 

human body and by the proposed model. 

A human head and the effect of anatomical details 

such as nose, mouth and ears were evaluated. A further 

ACES JOURNAL, Vol. 33, No. 7, July 2018

Submitted On: September 21, 2017 
Accepted On: April 21, 2018 1054-4887 © ACES 

741

mailto:giovanni.manfredi@onera.fr
mailto:giovanni.manfredi@supelec.fr
mailto:v.dimattia@univpm.it,
mailto:v.dimattia@univpm.it,
mailto:paola.russo@staff.univpm.it
mailto:a.deleo@univpm.it
mailto:g.cerri@staff.univpm.it


investigation was extended to the whole body, analysing 

the possibility of retrieving the field backscattered by the 

whole body as superposition of the field reflected by 

separated body parts. 

 

II. HUMAN FACE REPRESENTED BY 

CANONICAL GEOMETRIC SHAPES 
A previous work [2] pointed out that the most proper 

frequency range to detect the breathing rate or body 

activities during real-time monitoring is 2-6 GHz. In  

this frequency range, approximate skin depth is lower 

than 1.5 cm. Therefore, a body representation with an 

accurate knowledge of internal tissues is useless, because 

only a thin external layer is involved in the evaluation of 

the scattered field. 

Another aspect concerns the representation of 

external details of the body, such as the nose, mouth and 

ears. The great variability of such anatomical details 

from one individual to another makes an excessively 

accurate modelling ineffective. 

In this section, the relevance of the anatomical 

details for the evaluation of EM backscattering was 

analysed, both in time and in frequency domain. The EM 

field reflected by the head of a Specific Anthropomorphic 

Mannequin (SAM) was compared with the backscattering 

of canonical geometric shapes, using a full wave 

numerical tool (CST Microwave Studio [14]). The chosen 

targets are shown in Fig. 1. 

 

 
 

Fig. 1. Geometric configurations implemented in CST 

Microwave Studio: head on the left side; spheres of 

different radii and an ellipsoid on the right side. 

 

More precisely, four spheres and one ellipsoid were 

analysed. The first sphere has a radius r = 109 mm, 

providing a volume equivalent to SAM’s head. The other 

spheres have a radius of 80 mm, 126 mm and 132 mm, 

which correspond to the dimensions of the head, along 

the frontal, sagittal and longitudinal axes respectively. The 

ellipsoid has dimensions of 80 mm x 126 mm x 132 mm. 

The head and solids were filled with a homogeneous 

dielectric material with the same properties as the skin  

(relative permittivity εr = 42, and conductivity σ = 3.6 S/m 

[15]). Both targets were placed at a distance of D = 1.5 m 

from a horn antenna along the z-direction. The excitation 

signal is a modulated Gaussian pulse, generated by the 

CST Microwave Studio’s time domain solver, whose 

spectrum is in the range 3-5 GHz. The wave travels in 

free space along the z-direction and the electric E-field 

is polarized in the y-direction. Figure 2 and Fig. 3 show 

the E-fields reflected by the solids and by the head, 

observed at 1 m along the z-axis, in time (TD) and 

frequency (FD) domain respectively. For a better 

comparison among the waveforms, the cross-correlation 

rxy was evaluated between the E-fields diffracted by each 

solid (y) and by the head (x). Table 1 reports the absolute 

value of the maximum amplitude of the backscattered 

electric fields, and the results of the corresponding rxy in 

both TD and FD. 

 

 
 

Fig. 2. E-fields backscattered by the head and the solids, 

observed in time domain. 

 

 
 

Fig. 3. E-fields backscattered by the head and the solids, 

observed in frequency domain. 

 

We may appreciate that the sphere (r = 109 mm) 

with equivalent volume to the head provides a response 

that best fits the realistic situation.  

Moreover, the reflected waves were normalized to 

the maximum peak value and correlated, in order to 

observe how their distortion depends on the scattering 

surface. All the chosen geometric shapes present a 

correlation of 0.99. The result proves that the 

representation of the anatomical details can be neglected 

in the range of a few GHz. 
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Table 1: Maximum field intensity and cross-correlation 

between the E-field waveforms diffracted by the spheres, 

the ellipsoid and the head 

Target E-field [V/m] TD: rxy FD: rxy 

SAM 0.058 1 1 

Sphere 

(r = 80mm) 
0.025 0.44 0.46 

Sphere 

(r = 109mm) 
0.059 0.99 0.98 

Sphere 

(r = 126mm) 
0.055 0.95 0.95 

Sphere 

(r = 132mm) 
0.077 0.74 0.74 

Ellipsoid 0.047 0.82 0.83 

 

III. NUMERICAL RESULTS OF THE E-

FIELDS SCATTERED BY THE HUMAN 

BODY PARTS 
The results achieved in the preceding section were 

extended to the whole body, analysing the possibility to 

retrieve the electric field backscattered by the whole body 

as superposition of the electric fields backscattered by 

separated body parts. The error due to the approximation 

of neglecting mutual electromagnetic coupling between 

body parts was estimated to quantify the trade-off 

between accuracy and computational efficiency. 

The human body was modelled as a collection of 

sphere, cylinders and parallelepiped to reproduce head, 

chest, arms and legs, whose dimensions are defined 

according to those of a realistic body. The height of the 

human model is 1.68 m and each part is characterized by 

the dielectric properties of the skin. Furthermore, the 

mutual coupling among body parts was neglected. 

The analysis was carried out with the same simulation 

set-up described in the previous section. Figure 4 shows 

the E-fields scattered by each body parts and observed at 

the distance D of 1.5 m in the time domain. As expected, 

at this position, the E-field reflected by the chest is 

greater than any other E-fields, because of its dimension 

and flat surface. 

The comparison between the E-fields reflected by 

the total body E r 1  (mutual coupling considered) and by 

its individual parts Er2 (mutual coupling neglected) was 

examined both in time and in frequency domain. 

The results are shown in Fig. 5 and Fig. 6, 

respectively. The cross-correlation pointed out a similarity 

between the two curves equal to 0.85 in both domains. 

Since the waveforms are quite similar, we can infer that 

the different field contributions due to each body part are 

combined with the proper time delay; the peak amplitude 

difference is due to the numerical accuracy, and is not 

significantly affected by the assumption of negligible 

mutual coupling among body parts. 

To highlight this aspect, further simulations were 

performed to evaluate the influence of spatial 

discretization. 

 

 
 
Fig. 4. Electric fields backscattered by individual elements 

of the human body (time domain). 

 

 
 

Fig. 5. E-field scattered by the whole body phantom and 

the sum of the E-fields scattered by each body part (time 

domain). 

 

 
 

Fig. 6. E-field scattered by the whole body phantom and 

the sum of the E-fields scattered by each body part 

(frequency domain). 
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The total calculation times required to simulate 

separately the body parts as a function of the spatial 

resolution, and the cross-correlation coefficient rxy 

between the resulting curves mentioned above, are 

shown in Table 2. 

The computer employed for the simulations has the 

following characteristics: processor Intel(R) Core(TM) 

i5-5200 CPU, 8GB RAM DDR4, graphics card NVIDIA 

GEFORCE 820M 1800MHz. 
 

Table 2: Analysis of the numerical accuracy as a function 

of spatial discretization 

Resolution (Cells 

per Wavelength) 

Calculation 

Time 

Cross- 

Correlation 

λ/8 26 h, 14 m, 28 s 0.83 

λ/10 45 h, 34 m, 25 s 0.85 

λ/12 87 h, 50 m, 39 s 0.89 
 

As expected, a finer grid provides better accuracy  

in the computation of the peak values and improves  

the correlation coefficient, but the waveform is not 

significantly affected by this parameter and no distortion 

can be appreciated. 
 

IV. CONCLUSION 
In this paper, we have demonstrated that in the S and 

C bands a simplified model of a human body compared 

to realistic model can be efficiently employed to evaluate 

the reflected electric fields. The correlation coefficients 

were analysed to compare in time and in frequency 

domain the realistic and the approximate solutions. The 

results outline that from a computational point of view, 

the body elements can be replaced with homogeneous 

geometric solids, and the anatomical details, as well as 

the mutual coupling among body parts, can be neglected. 

The simplified model proves to be efficient, light in 

terms of computational burden, and sufficiently accurate 

to analyse the interactions between the human body and 

the EM fields. 
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