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Abstract—Hybrid formulations for solving nonlin-
ear 3D magnetostatic and eddy current problems in
terms of magnetic field H are presented. In the pro-
posed formulations integral operators are utilized as if
the boundary conditions for a partial differential equa-
tion were solved within the system of equations. A
good correspondence between the results of the pre-
sented methods and measurements or other methods
is obtained for some test problems.

I. INTRODUCTION

In this paper hybrid formulations for solving nonlinear
3D magnetostatic and eddy current problems in terms of
magnetic field H are presented. Using the proposed for-
mulations problems with conducting and magnetic subre-
gions can be solved without discretizing air regions.

The approaches to form and solve a system of equations
providing a solution for H within a bounded region ! (and
its boundary I') can be characterized as follows. A par-
tial differential equation (PDE) governs the magnetic field
within 2. In addition, an integral operator B or H yields
the normal component of flux density B -n or the tangen-
tial component of magnetic field H x n on T’ as a func-
tion of magnetization M = xH and currents J = curl H.
Thus, the proposed formulations share the advantages of
both differential and integral operators, such that compu-
tationally efficient differential operators are employed in
interior region, and integral operators are used to provide
boundary conditions on I' in order to avoid meshing air
regions.

II. METHODS

A. Assumptions and Definitions

It is assumed that region Q and its boundary I' are
simply connected, even though the formulations can be
extended also in multiply connected regions {1],{2]. It is
also assumed that conductivity o is piecewise constant
and strictly positive within 2, and that permeability u
is bounded and positive. Susceptibility x is defined by
x = p/po — 1. It is also assumed that ¢ = 0 in R? - Q,
and in addition, that there is no current flow across T (i.e.
J-n = 0). The magnetic field strength, the magnetic flux
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density, the electric field strength, the electric current den-
sity, the magnetization, and the magnetic vector potential
are denoted by H, B, E, J, M, and A, respectively. When
source currents are denoted by J*, the constitutive laws
can be givenas J =cE+J°, B=puH, and M = xH.
For simplicity, it is also assumed that there are no source
currents J* in §2.

All formulations presented here are based on finding
a solution for H. As the magnetic energy is always fi-
nite, H evidently belongs to the space of square inte-
grable vector fields IL?(2). The space IL2({2) can be split
into complementary gradient and curi parts such that
L2(Q) = G® C°, where G = {H'| curl H' = 0} and
CO={J'|divs’ =0, J'-n =0on '}, where n is the
normal pointing outward from §2 [3]. The space of square
integrable scalar fields is denoted by L?({2). The space of
scalar fields belonging to L?(f2) whose gradients belong to

ILZ(f)) is abbreviated as Lg,ad(ﬂ) and the space of vector

fields belonging to IL?(Q) whose curls belong to IL*($2) as
ILZ ().

B. B -n-hybrid Formulations

In order to derive the hybrid formulations to find a
solution for H, the Gauss’ law for magnetics is multiplied
by a test function ¢’ € L?(f), and then integration by
parts yields

./H"‘“H - /QO’B'” Vi{g H'}reg, (1)
o r

where G is the set of all pairs {¢',H'} for which ¢' €
L%,4(Q) and H' € G, such that grad ' = H'. Knowing
B-nonT, (1) can be used to set up a system of equations
yielding a PDE solution for H in the magnetostatic case.
However, B - n is usually not known on the boundary
of the magnetic and/or conducting material. The first
option to circumvent this problem is to decompose B - n
term in (1) into two parts: B?-n due to the known source
currents J° and B(curl H, xH) -n due to induced currents
J = curl H and magnetization M = yH. The integral
operator B yielding B due to currents and magnetization
in © is defined such that
(B(J, M))(r) = E2 / I X =) ot e o (r)+
’ dr [r =3 0
)
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The magnetic flux density B® due to currents external to
) is given by the Biot-Savart’s law

f Js(r x(r—r g (3)

|r = r'|3
Now substitution of B = B(J, M) + B*® into (1) vields
fH’-pH—/cp'B(curlH,xH)-n=/(p'Bs-n (4)
0 r r

for all {¢', H'} € G [4],[2]. In (4) only B*-n is required to
be known on I', and the unknown part of “the boundary
condition” due to M = yH is solved within the system of
equations.

As it is assumed that J° = 0 in {2, in magnetostatic case
H is a gradient field. Thus the magnetostetic B - n-hybrid
formulation can be stated as follows: Find H € G such
that (4), where curl # = 0, holds for all {¢',H’'} € G.

In eddy current problems the induced currents are taken
into account by using also Ampére’s and Faraday’s law
such that the solution H also satisfies
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for all pairs {W',J'} € C, where C is the set of all pairs
{W', J'} for which W' € ILZ ,(?) and J' € C° and
curl W' = J' [4],[2]. Now the B - n-hybrid eddy current
formulation is given: Find H € IL*{f) such that (4) holds
for all {¢',H'} € G and (5) holds for all {W’',J'} € C.

C. H x n-hybrid Formulations

There is also another possibility to avoid meshing air
such that the total field on I' need not be known. In-
stead of exploiting directly the theory of the orthogonal
subspaces of IL?(2) [3], these methods are presented here
using a similar approach as in the derivation of the stan-
dard PDE methods (FEM).

First it is provisionally assumed that H x n is known
onl (ie. H xn=honT, where h is a known function).
Then the solution for H is searched from an affine sub-
space of IL%(Q) yielding the known boundary conditions
honT. When knowing k in (1), it may be chosen that ¢'
is constant and H' x n = 0 on I". Thus (1) is replaced by
the given boundary condition and

fH’-,uH =
!

where G® = {H'| curl H' =0, H' xn=0onT}. By im-
posing H xn = h explicitly on T' with additional equations
an equivalent formulation to the standard FEM approach
for magnetostatics can be stated as: Find H € G such
that (8) hold together with H x n=h on I.

In practice h is usually not known on the boundary of
the magnetic and/or conducting material. Thus equation
H x n = h is modified such that only the part of H x n

H ed, (6)

on I' due to known source currents J® need to be known a
priori, and the boundary condition due to magnetization
and eddy currents is solved at the same time as the solu-
tion inside €. In other words H is decomposed into two
parts similarly as B above, such that H = H({J, M)+ H",
where H® = B®/pg and the integral operator #(J, M)
yielding H due to M and J in 2 is defined as:

(H(J, M))(r) = -—f‘f(’"') xr _"’)d '+
—M(r) | 3[M{r) - (r—r)(r =),
PP dar'. (7)

dr [ =7
Q

Now the boundary values can be solved from equation

Hxn—-H(curl HxyH)xn=H"xn on I. (8

Thus the magnetostatic H xn-hybrid formulation can be
stated as: Find H € G such that (6) and (8) hold. Notice
that in magnetostatic case curl # = 0 in (8). Similarly
the H x n-hybrid eddy current formulation is given: Find
H € IL?() such that (6) and (8) hold together with (5)
holding for all {W',J'} € C.

D. Discretization

Consistency between the continuous and the discrete
form of the proposed hybrid formulations is retained by
employing Whitney edge elements in a tetrabedral mesh.
Thus H is approximated as

H=) hew., (9)

ee&

where h, represents the degree of freedom (DoF)} related
to edge e (i.e. the circulation of H along e), w. is the
basis function of edge e and £ is the set of edges.

The discrete analogies of G, G° and C° can be created
using the spanning tree technique [5],[6]. Since any gra-
dient field can be presented using the tree edges £7, the
basis functions of & are related to the tree edges and they
are linear combinations of the basis functions w,. [5]. In
order to form the discrete analogy of G°, the tree must be
created first on I’ (£F) and after that inside 0 (€2}, Now
the mdeqpendent basis of G is related to the 1nter1or tree
edges £Z in the same way as G to all tree edges £7. The
“boundary equations” (8) of the H x n-hybrid approaches
are discretized by forcing the solution of H to yleld cor-
rect circulations along the boundary tree edges £Z, such
that (8) is replaced by

/H-t-—j?—t(curlH,xH)~t=/I—Is-t ve € £F, (10)

where ¢ is & unit tangent vector of a curve.

Also for the discrete €, the tree must be created first
onI'. Then the basis functions w, of the co-tree (L.e. com-
plement of tree) edges interior to 2 form the independent
basis of W (i.e. the space where all W' belong) and the
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curl of them the basis functions of C® [2]. Thus, no basis
functions of G or C? are related to co-tree edges on T', but
correspondingly also circulations A, along co-tree edges on
T' are not DoFs, since they can be expressed as a linear
combinations of DoFs related to boundary tree edges £F
due to the assumption J - n = 0 on I' [2]. Thus in all the
proposed H-orientated approaches the number of DoF's
and the number of equations are equal: number of tree
edges in magnetostatic case and number of tree edges and
interior co-tree edges for eddy current problems,

In this paper transient eddy current problems are sotved
using the backward difference implicit time-marching
method.

In the proposed hybrid formulations the integral oper-
ators are related only to the boundary tree edges. Thus
the system matrices is sparse (as the matrix in FEM) ex-
cept the rows related to the boundary tree edges which
are fully populated. The relative size of this dense block
depends highly on the fraction of the edges on I'. Even
though the system matrix is only partly dense, so far
the systems of equations are solved using a standard LU-
solver for dense matrices. However, it has been shown
that iterative solvers can be much more efficient in solv-
ing dense systems than LU-solver [7]. Moreover, accord-
ing to some preliminary tests, systems arising from this
kind of hybrid methods could be solved tens or even hun-
dreds times faster with iterative methods than with LU-
decomposition.

I7I. REsSULTS

A. B-n- versus H x n-hybrid methods

When solving problems with the B - n-hybrid method,
it was noticed that in order to get satisfactory results the
boundary integrals should be computed with very high ac-
curacy or a very dense mesh should be used if the bound-
ary T is on the surface of the ferromagnetic region. The
problem can be circumvented by adding one or two ele-
ment layers of air on the top of the iron parts, but this
kind of trick contradicts the aim to avoid meshing air.
On the contrary, the H x n-hybrid formulations provide
accurate results with moderate accuracy of the numerical
integration of the line integrals along boundary tree edges
and also with coarse meshes. Therefore the H x n-hybrid
approaches have been selected to closer examination, and
all the hybrid results presented in this paper are obtained
using the H x n-hybrid formulations.

B. TEAM problem 18

The first test problem is TEAM problem 13, whichis a
nonlinear magnetostatic problem consisting of thin steel
plates, which are excited below the saturation level [8].
The model is symmetrical such that fields in one fourth of
the model need to be solved. One of the main difficulties
in this problem is the narrow air gap between the central
steel plates and the U-shaped parts and the sharp corner
in the U-shaped plates. According to definition of TEAM
problem 13 [9], the corner in the plate is sharp. However,
it has been found out recently that the meagured reference
results are obtained by using a device where the outer
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Fig. 1. Average fiux density in the steel plates of TEAM problem
13 obtained using the H x n-hybrid method.
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Fig. 2. Magnetic field in air in TEAM problem 13 obtained using
the H x n-hybrid method.

radius of the rounded corner is about 5 mm [10]. Since the
average flux density is measured and calculated near the
corner the effect of this inaccuracy is remarkable. Because
of this, the computational results for problem 13 presented
in this paper are obtained using models with a rounded
corner.

Results - requested in the problem definition (8] — for
TEAM problem 13 at the lower excitation current level
(1000 A) with three meshes solved using the H x n-hybrid
method are shown in Figs. 1 and 2. Mesh 1 consists of 480
nodes and 1615 tetrahedra, Mesh 2 of 1350 nodes and 4780
tetrahedra and Mesh 3 of 3601 nodes and 14134 tetrahe-
dra. The resulting linear systems have 462 equations for
Mesh 1, 1320 equations for Mesh 2 and 3551 equations for
Mesh 3. Both meshes are refined approximately equally
near the air gap and near the corner, and the Mesh 2 is
shown in Fig. 3.

Computed and measured values of both the average flux
densities in the plates and the magnetic field in air are in
fairly good agreement with the measurements. The com-
puted average flux densities in the plates are quite inde-
pendent of the mesh except near the air gap, and they
converge to a slightly larger values as obtained from the
measurements. However, only one independent measure-
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Fig. 3. Mesh 2 used in solving TEAM problem 13. There are 1350
nodes and 4780 tetrahedra in the mesh.

ments have been done for TEAM problem 13, there is
always the possibility that the measured curves does not
correspond exactly the model definition (e.g. due to hys-
teresis of steel). In addition, now when the corner of the
computational model is rounded, the computed and mea-
sured average flux densities are similar also in the corner
region. In air only the results of the coarsest mesh (Mesh
1) differ remarkably from the measurements near the re-
gion where there are largest elements.

C. TEAM problem 4

In the FELIX brick problem a rectangular aluminum
brick with a rectangular hole through it is placed in a
exponentially decreasing uniform external magnetic field
[11]. Results for the FELIX brick using the H x n-hybrid
formulation and two meshes are presented in Figs. 4 -
6. The coarse mesh consists only 16 nodes, 26 teira-
hedra and 27 DoFs, whereas the dense mesh has 459
nodes, 1945 tetrahedra and 2140 DoFs. The solution the
coarse mesh for 40 time steps on a DEC AlphaStation 600
5/333 workstation took only couple of CPU-seconds. The
elapsed CPU-time to compute the hybrid sclution for the
dense mesh was 1260 seconds, and 92% of the total time
took the 40 dense LU-solutions. Thus, at least in this
case an iterative solver fully utilizing the sparse matrix
hybrid method could reduce the computing time signif-
icantly. The computed eddy current distribution in the
dense mesh is shown in Fig. 4.

In Fig. 5 the total eddy current circulating in the brick
are shown. Global quantities (e.g. total power and total
current) are close to those obtained using other methods
[6],[12] also with very coarse meshes. The induced mag-
netic field (i.e. the external field is subtracted from the
total field) at the center of the brick are presented In Fig.
6. Also this integrated field outside the conducting region
are in good agreement with other methods [6],[12].

D. Conducting Iron Ring

The other test problem is a magnetic and conducting
ring, which is rotationally symmetric and thus reliable
comparisons can be made to results obtained with 2D
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Fig. 4. Eddy current distribution in the dense mesh of the FELIX
brick at 10 ms.
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Fig. 5. The total circulating eddy current in the FELIX brick.

methods. The symmetry axis of the ring is the z-axis. The
cross-section of the ring is rectangular such that the inner
radius of the ring is 30 mm, the outer radius is 60 mm,
and thickness is 20 mm. The relative permeability of the
material is 1000 and the conductivity is 10 S/m. The
ring is placed in spatially uniform external magnetic field
B., which is in the z-direction. For t < 0, B, = 0, and
fort >0, B, =0.1 T(1~e*/1%).

For testing the 3D method one eighth of the ring is
modeled, even though the problem is in fact a 2D prob-
lem. The results of the developed methods are compared
to 2D FEM results (Opera-2d [13]) computed using a high
number of DoFs. Results for the conducting iron ring
problem using two meshes are presented in Figs. 7 - 0.
The coarse mesh consists of 122 nodes and 361 tetrahe-
dra, whereas the dense mesh includes 991 nodes and 3703
tetrahedra. The resulting number of DoFs are 358 and
3976, respectively.

Also in this case the global quantities {e.g. total ohmic
power and total current) can be computed accurately with
quite coarse meshes as shown in Fig. 8. In Fig. 9 the local
behavior of the current density is shown along the surface
of the ring (z = 10 mm) as a function of the distance from
th z-axes. As the use of Whitney elements imply that the
current density is constant in each element, the agreement
with the 2D results cannot be very good, since there are
only small fraction of elements in the 2D cross section of
the 3D model compared to the 2D model.
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Fig. 6. The induced magnetic flux density B: at the center of the
FELIX brick (i.e. in the center of the hole).

Fig. 7. Magnetic flux density distribution in the dense mesh of the
conducting iron ring at 0.2 s. :

IV. CoNCLUSION

In this paper new types of hybrid methods to com-
bine differential and integral operators in formulating 3D
magnetostatic and eddy current problems are presented.
By using the proposed hybrid methods problems can be
solved without discretizing air regions, which is from the
end user’s point of you a remarkable practical advantage
compared to standard FEM formulation. The results pre-
sented for the test problems validate the methods and re-
sults with moderate accuracy can be obtained using only
a very small number of elements. However, in order to
achieve a good performance with these hybrid formula-
tions it is essential to have a solver which efficiently uti-
lizes the sparsity of the system matrix.
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