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Abstract ─ Compact modeling approach of anisotropic 

media by using the Z-TLM method is proposed. Thin 

anisotropic multilayer material is efficiently described 

through connection procedure between two Z-TLM mesh 

cells, by using the scattering parameters to create a digital 

filter-based compact model. Model is incorporated into 

non-uniform TLM grid given here in a form fully 

complying with the originally proposed Z-TLM method 

algorithm. Accuracy and efficiency of the compact model 

is confirmed on a few examples through comparison 

with the fine mesh results. 

 

Index Terms ─ Anisotropic materials and composites, 

compact model, non-uniform grid, Z-TLM method. 
 

I. INTRODUCTION 
Discrete time modeling techniques have been  

used by researchers for years to simulate and observe 

propagation and distribution of electromagnetic (EM) 

fields inside of different media. The two most popular 

modeling techniques based on time and space 

discretization are the Finite Difference Time Domain 

(FDTD) method [1] and the Transmission Line Matrix 

(TLM) method [2]. Generally, the FDTD method is often 

the favored numerical technique for solving different 

kinds of EM problems ranging from antenna problems, 

electromagnetic compatibility, microwave systems, etc. 

However, the TLM method, since it was established  

in 1970 by P. B. Johns, has proven to have certain 

advantages in modeling of specific complex structures 

and nonlinear materials.  

TLM algorithm is highly localized since electric and 

magnetic fields are solved in the center of the TLM  

cell at the same time. In addition to that, the fact that  

any change in the state of a TLM cell affects only its 

immediate neighbors at the next computational step 

makes it more suited for modeling of anisotropic and 

bianisotropic media. EM fields on cell boundaries can  

be determined without necessity to perform temporal 

interpolation and field averaging, which is another 

important feature. An enhancement of the TLM method 

with Z-transform techniques (so-called Z-TLM method) 

[3] enables a direct mapping of dispersive EM material 

properties into the time-domain in order to study their 

time-harmonic and transient response. The Z-TLM 

method has already been used for simulation of linear 

isotropic and anisotropic media, bi-isotropic and quantum 

materials as well as materials with nonlinear and 

metamaterial properties [3-9]. 

In order to properly simulate behavior of 

geometrically small but electrically important features in 

an otherwise large modeling space, by using traditional 

approach in discrete time modeling methods, an extremely 

fine mesh is required. With intention to overcome this 

computationally and time costly requirement, and thus 

improve efficiency, development of compact models is 

required. Compact models allow for using coarser mesh, 

e.g. reducing all thin material cells to single boundary 

condition based on material panel scattering parameters 

[10] (sort of “black box” approach where only input and 

output values are observed) or by using retrieval methods 

for effective EM parameter extraction from the scattering 

parameters of thin material in order to model it and 

observe EM field behavior within its interior boundaries 

[11].  

Material can be defined as anisotropic when values 

of one or more EM properties (such as conductivity, 

permittivity and permeability) depend on direction of 

EM propagation e.g., when EM properties are functions 

of the coordinate system orientation. Micro-structure of 

anisotropic materials consists out of different layers 

created and connected naturally (wood, different crystals, 
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minerals and rocks, etc.) or intentionally in structural/ 

man-made (reinforced, ribbed, perforated, layered 

materials etc.). General anisotropic materials, besides 

coefficients on main diagonal (axx, ayy, azz) in EM property 

matrix, contain additional coefficients which describe 

codependency based on direction (axy, axz, ayx, ...). This 

makes modeling of materials like carbon, graphite, glass 

and other composites more challenging.  

In this paper, the discretization of Maxwell’s 

equations and constitutive relations for simulation of 

general anisotropic and dispersive materials, using the Z-

TLM method in non-linear grid, is described. The ways 

to describe the TLM method for modeling of dispersive 

and anisotropic media and/or using non-uniform meshes 

have been given in [12, 13] but here is given in a form 

that fully complies with the Z-TLM method initially 

proposed in [3-5]. In addition to that, an efficient 

approach for compact modeling of composite anisotropic 

materials, previously applied on a one-dimensional  

case [14], is here given in a generalized form and later 

used in a two-dimensional (2-D) problem. It uses the 

scattering parameters of a composite structure consisting 

in general of n material layers, obtained from e.g., fine 

Z-TLM mesh, to create a digital filter-based compact 

model where composite structure is efficiently described 

with boundary condition between two Z-TLM mesh 

cells. Compared to other network-based methods such as 

ladder type method [15], the proposed approach is more 

general and the created model is more easily and more 

memory efficiently incorporated into the TLM connection 

procedure. Accuracy and efficiency of the approach is 

confirmed on a few examples through comparison with 

the fine Z-TLM mesh results. 

 

II. DISCRETIZATION OF MAXWELL’S 

EQUATIONS FOR NON-UNIFORM MESH 
For non-uniform TLM cell, where one or more 

directional space steps ( ,x y  , and z ) are not equal, a 

compact form of Maxwell’s curl equations is established 

through constitutive relations for electric and magnetic 

current and flux densities: 
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where   denotes time domain convolution, ,ef mfJ J  

represent electric and magnetic current densities vectors, 
,e m   and ,e m   are electric and magnetic conductivity 

and susceptibility matrices respectively, 0 0,   are  

free space permittivity and permeability, and ,r r    

are dimensionless matrices describing magnetoelectric 

coupling. 

By expanding curl terms of (1) in Cartesian 

coordinates and introducing a compact notation with 

defined matrices and vectors, the following expression is  

formed: 
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(2) 

In (2) 0  is intrinsic impedance of free-space, V  

and i  are vectors of voltages and currents defined in the 

center of TLM cell while the matrix of inverse cell areas 

and normalized curl matrix are represented as: 
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(3) 

where , ,X Y Z    are normalized spatial derivatives in 

x, y and z direction respectively.  

After applying the field circuit equivalences and 

defining free-current vectors, free current density terms 

are formed as: 
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 (4) 

Vector matrix form of time derivative field term is 

established by transforming time derivative operator 
t




: 
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by defining the matrix of inverse cell length 1
  as: 
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and introducing parameter t as the time-step adjustment 

factor so that: 
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Compact notation of electric and magnetic 

conductivity terms is defined in order to represent them 

as: 
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  (8) 

Time derivative susceptibility term in normalized 

form yields: 
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Using expressions above along with defining 

background susceptibilities matrix, 
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where 1  is identity matrix, a normalized form of 

Maxwell’s equations is assembled as: 
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(11) 

Approximating the normalized partial derivations  

in the curl matrix using the finite-differences of the 

voltages and currents on the surface of the TLM cell  

and applying the transformation to the travelling wave 

format as explained in [3], (11) can be written as:  
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Defining the left-side of (12) as the excitation vector 

and introducing an effective susceptibility matrix as: 
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the final form of discrete-time solution of Maxwell’s 

equations can be obtained as: 
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Previous expression can also be written as: 
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where  T  is conductivity matrix and  M T  general 

material matrix, which also may contain some time 

dependent elements indicated explicitly with (T). 
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Using e.g., the bilinear Z-transform in the form 

   1 1/ 2 1 / 1T z z       (15) can be written as: 
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where z is a time shift operator. Additionally, matrix 

4 41 . 

In the modeling of matrices ( )z  or ( )M z  

containing causal time-dependent elements, the overall 

strategy is to shift the time-dependence back to the 

previous time-step by taking partial fraction expansions 

as explained in [3,4]: 
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III. COMPACT MODELING OF N-LAYER 

ANISOTROPIC MATERIAL  
Proposed approach for a simulation of thin 

anisotropic multilayer material is based on acquiring  

the co-polarized and cross-polarized reflection and 

transmission coefficients in order to derivate the compact 

model. Hence, it is possible to eliminate the need to 

apply a fine mesh for modeling of material itself and 

replace it with interior boundary condition incorporated 

into a coarse mesh. When applying the compact model, 

the required number of cells and simulation run-time are 

significantly reduced in comparison with the fine mesh 

simulations.  

The process of generating the compact model begins 

by numerically acquiring the co- and cross-polarized 

scattering parameters of thin anisotropic material by 

using the fine TLM mesh. Assuming that the thin 

anisotropic material is surrounded by air and placed in  

i-plane, the case of one-dimensional (1-D) propagation 

in i direction, with no coupling to the i-directed field 

components, has to be first considered. Two fine mesh 

time domain simulations have to be run with j- and  

k-polarized incident wave propagating in i direction, 

respectively. For each excitation, the incident field at the 

air-anisotropic material interface as well as the reflected 

and transmitted fields of appropriate polarization on both 

sides of this interface has to be recorded at each time-

step so that the co-polarized and cross-polarized reflection 

and transmission coefficients of air-anisotropic material 

interface can be obtained using the following equations 

(20) and (21), respectively: 
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where index k is used to mark incident, reflected or 

transmitted field of k polarization and index j is used  

to mark incident, reflected or transmitted field of j 

polarization. The remaining co-polarized and cross-

polarized reflection and transmission coefficients, S12 

and S22, can be found similarly considering j- and k-

polarized incident wave propagating in -i direction. 

After performing the Fourier transform and 

translating parameters from time to frequency domain, 

the vector fitting (VF) method [16-18] is used to calculate 

rational approximations of n-th order (NP poles) of 

obtained co-polarized and cross-polarized reflection and 

transmission coefficients as: 
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k ijC  are complex pole frequencies and 

residues, respectively, pr
ijNP  is a number of poles and 
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. Applying the bilinear Z-transform results in discrete-

time representation of (22): 
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where PFE stands for partial fraction expansion, 
,

pr
k ijA ’s 

and ,
pr
k ijB ’s coefficients are real and the coefficients 

0,, , ,'
pr pr pr pr

ijk ij k ij k ijB B B A  . 

Digital filter-based compact model is then 

incorporated into the connection matrix of two TLM 

cells at which interface the anisotropic material is 

modeled as internal boundary condition (Fig. 1) so that: 
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where the incident and reflected voltage pulses 

orientations are defined with the respect of center of the 

TLM cells.  

Considering that wave propagation can be observed 

along different axes of the Cartesian coordinate system, 

appropriate usage of TLM cell voltage pulses in (24) and 

(25) for each direction accordingly is provided in Table 

1.  
 

 
 

Fig. 1. Anisotropic n-layer material panel modeled as 

internal boundary condition. 

 

Table 1: Voltage pulses notation based on wave 

propagation in i direction 

, ,i j k

 

i x

 

i y

 

i z

 [ ]kV i

 

12V

 

10V

 

8V

 [ 1]kV i 

 

11V

 

9V

 

7V

 [ ]jV i

 

6V

 

4V

 

2V

 [ 1]jV i 

 

5V

 

3V

 

1V

  

IV. MODELING RESULTS 
The efficiency and accuracy of the compact 

modeling approach presented in section 3 is illustrated 

on two 2-D cases by using in-house developed TLM-Z 

code executed in MATLAB environment. 

 

A. Symmetrical case 

Thin single layered anisotropic material panel 

surrounded by air on both sides is placed in 2-D space 

(Fig. 2). Thickness of material is d=1 mm, isotropic 

relative permittivity has value of 5r   while the electric 

conductivity is anisotropic and described with matrix: 

 ,

xx xy xz

yx yy yz

zx zy zz

  

   

  

 
 

  
 
  

 (26) 

where 100yy yz zy zz        while the other matrix 

elements are equal to zero. 

In order to obtain the co-polarized and cross-

polarized reflection and transmission coefficients, as 

explained in section 3, an initial pulse of Gaussian form 

polarized first in z and then in y direction while 

propagating along the x axis was considered. 1-D Z-

TLM fine mesh consisting out of 210 cells in x direction 

(10 cells to accurately represent EM field inside of the 

material) was used. Smallest dimension in model (in this 

case material panel) have to be described with minimum 

x

y z

Vk[ ]i

Vj[ ]i

Vk[ ]i+1

Vj[ ]i+1
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5 cells and it is recommended to use at least 10 cells to 

represent minimum wavelength. Real and imaginary 

parts of co-polarized and cross-polarized reflection and 

transmission coefficients, obtained in such way are 

shown in Figs. 3 and 4. Due to symmetrical case, 

11 2211 22
yy yy zz zzS S S S   , 11 22 11 22

yz yz zy zy
S S S S   , 

12 2112 21
yy yy zz zzS S S S    and 12 21 12 21

yz yz zy zy
S S S S   . 

 

 
 

Fig. 2. Thin single layered anisotropic material placed in 

2-D space. 

 

 

 
 

Fig. 3. Real and imaginary part of co-polarized and 

cross-polarized reflection coefficients ( 11
yyS  and 11

yzS ) of 

thin single layered anisotropic material. 

 

Next, coefficients A and B, obtained by the VF 

method in order to approximate the obtained reflection 

and transmission coefficients, are given in Table 2.  

The rational approximations of 4-th order (number 

of poles NP = 4) is used to achieve needed accuracy.  

In [14] complex frequency dependence of reflection/ 

transmission curves demanded rational approximations 

of 24th order. This neither influenced stability of method 

nor reduced accuracy of results but considering that 

higher number of poles increases computational time it 

is recommended to find a proper balance. In some cases, 

reduction of frequency bandwidth in which the model  

is valid may reduce complexity of the approach and 

therefore can positively influence the modeling process. 

The approximated curves are shown also in Figs. 3 and 

4. 
 

 

 
 

Fig. 4. Real and imaginary part of co-polarized and 

cross-polarized transmission coefficients ( 12
yyS  and 12

yzS ) 

of thin single layered anisotropic material. 

 

Thin single layered anisotropic material placed in 2-

D space, as shown in Fig. 2, was considered in two ways: 

1) Conventional approach by using the fine Z-TLM 

mesh to describe material (10 cells per thickness);  

2) Proposed approach using coarse mesh and derived 

compact model placed at the position corresponding 

to the initial position of anisotropic material. 

Fine mesh was consisted out of 882x441x1 TLM 

cells. The number of time steps was 6300. Material is 

described with 10x441 cells while the rest of the cells are 

defined in areas filled with air. Excitation z-polarized 

source is placed at point marked as IN while electric field 

is observed in 3 different output points (OUT1, OUT2 

and OUT3). Boundaries of the mesh in x and y planes  

are defined as absorbing while wrapped boundary 

conditions are used in z plane. 

Compact model was incorporated into the coarse 

mesh with 42x21x1 cells. Cell size is increased to l=2.1 

mm in order to preserve same modeling space. In that 

way, the number of cells is significantly reduced from 

388962 cells, used in fine mesh, to only 882 cells (almost 

99.78% less required cells) and the number of time steps 

is reduced from 6300 to 600.  
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Time-domain values of the electric field components 

in 3 output points, obtained by using the fine mesh 

(dotted lines) and course mesh with incorporated 

compact model (solid lines) are shown in Fig. 5. A good 

agreement between these two results can be observed.  

 

 

 

 
 

Fig. 5. Time-domain values of electric field components 

in 3 output points for thin single layered anisotropic 

material. 

 

B. Asymmetrical case 

In the second 2-D case, the composite general 

anisotropic material (Fig. 6) consists out of two layers of 

thickness d1=d2=1 mm, isotropic relative permittivity 

5r  , and the anisotropic electric conductivities: 

 1

0 0 0

0 100 100 ,

0 100 100



 
 


 
  

 2

0 0 0

0 100 0 .

0 0 500



 
 


 
  

 (27) 

Overall dimensions and cell size of 1-D fine meshes, 

as well as 2-D fine mesh and 2-D coarse mesh with 

incorporated compact model, are the same as in 

previously described single layered model. 10 cells per 

thickness are used for each layer. 

 

 
 

Fig. 6. Thin double layered anisotropic material placed 

in 2-D space. 

 

Real and imaginary parts of some of co- and cross-

polarization reflection and transmission coefficients of 

thin doubly layered anisotropic material are shown in 

Figs. 7-10.  

Coefficients A and B, obtained by the VF method  

in order to approximate the obtained reflection and 

transmission coefficients, are given in Table 3. The 

approximated curves are shown also in Figs. 7-10.  

 

 

 
 

Fig. 7. Real and imaginary parts of co-polarized and 

cross-polarized reflection coefficients ( 11
yy

S  and 11
yz

S ) of 

thin double layered anisotropic material. 
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Table 2: Coefficients used in (24) for compact representation of scattering parameters of single layered anisotropic 

material 

Coefficient 11 22 11 22

yy yy zz zzS S S S    
11 22 11 22

yz yz zy zyS S S S    
12 21 12 21

yy yy zz zzS S S S    
12 21 12 21

yz yz zy zyS S S S    

B0 -0.30415 -0.30415 0.063009 -0.06914 

Bprim 

-0.19535 -0.19534 0.271142 -0.24547 

0.454817 0.454811 -0.30291 0.099353 

-0.33921 -0.3392 -0.11521 0.07618 

0.079605 0.079601 0.150994 0.023792 

A 

1 1 1 1 

-2.02082 -2.02079 -1.94979 -1.40735 

0.942684 0.942647 1.278526 1.036736 

0.263883 0.263892 -0.48868 -0.65231 

-0.18501 -0.18501 0.168866 0.13335 

 

Table 3: Coefficients used in (24) for compact representation of scattering parameters of double layered anisotropic 

material 

Coefficient 11

yyS  11

zyS  11

yzS  11

yzS  12

yyS  
12

zyS  12

yzS  
12

zzS  

B0 -0.24811 -0.34991 -0.34991 -0.24751 -0.00064 -4.3E-05 0.000806 2.62E-05 

Bprim 

-0.36872 -0.05714 -0.05714 -0.36872 -0.00032 -5.1E-05 0.000567 3.32E-05 

0.938844 0.438528 0.438528 0.926638 0.002292 0.000184 -0.00276 -0.00011 

-0.8042 -0.68222 -0.68222 -0.77416 -0.00338 -0.00023 0.002462 0.000132 

0.232546 0.301308 0.301308 0.215514 0.001415 9.24E-05 -0.00028 -4.9E-05 

A 

1 1 1 1 1 1 1 1 

-3.03142 -2.0778 -2.0778 -3.00084 -3.36594 -3.5849 -2.69801 -3.51673 

3.418113 1.169718 1.169718 3.328296 4.257562 4.825226 2.615658 4.658698 

-1.69193 -0.03519 -0.03519 -1.61464 -2.40398 -2.89129 -1.06807 -2.75777 

0.30736 -0.05533 -0.05533 0.288149 0.512677 0.65106 0.152168 0.616004 

Coefficient 22

yyS  
22

zyS  
22

yzS  
22

zzS  
21

yyS  
21

zyS  
21

yzS  
21

zzS  

B0 -0.53567 9.19E-06 9.19E-06 -0.66253 -0.00064 0.000806 -4.3E-05 2.62E-05 

Bprim 

-0.40885 2.38E-05 2.38E-05 -0.39397 -0.00032 0.000567 -5.1E-05 3.32E-05 

1.018796 -5.4E-05 -5.4E-05 1.023097 0.002292 -0.00276 0.000184 -0.00011 

-0.83547 3.66E-05 3.66E-05 -0.8784 -0.00338 0.002462 -0.00023 0.000132 

0.224896 -6.4E-06 -6.4E-06 0.24896 0.001415 -0.00028 9.24E-05 -4.9E-05 

A 

1 1 1 1 1 1 1 1 

-2.29451 -3.62786 -3.62786 -2.21122 -3.36594 -2.69801 -3.5849 -3.51673 

1.48577 4.920007 4.920007 1.193826 4.257562 2.615658 4.825226 4.658698 

-0.02709 -2.95467 -2.95467 0.291451 -2.40398 -1.06807 -2.89129 -2.75777 

-0.16274 0.662553 0.662553 -0.2731 0.512677 0.152168 0.65106 0.616004 
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Fig. 8. Real and imaginary parts of co-polarized and 

cross-polarized transmission coefficients ( 12
yy

S  and 12
yz

S ) 

of thin double layered anisotropic material. 

 

 

 
 

Fig. 9. Real and imaginary parts of co-polarized and 

cross-polarized reflection coefficients ( 22
yy

S  and 22
yz

S ) of 

thin double layered anisotropic material. 
 

Time-domain values of the electric field 

components in 3 output points, obtained by using the fine 

mesh (dotted lines) and course mesh with incorporated 

compact model (solid lines) are shown in Fig. 11. Results 

from point OUT3 for z component of electric field are 

shown separately for presentation purposes, because 

output values acquired in third point are much higher 

than results from first two points. A good agreement 

between these two results can be observed. 
 

 

 
 

Fig. 10. Real and imaginary parts of co-polarized and 

cross-polarized transmission coefficients ( 21
yy

S  and 21
yz

S ) 

of thin double layered anisotropic material. 
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Fig. 11. Time-domain values of electric field components 

in 3 output points for thin double layered anisotropic 

material. 

 

V. CONCLUSION 
Efficient TLM based approach for compact 

modeling of anisotropic materials and composites is 

presented in this paper. Major advantage of this approach 

is significant reduction (over 99%) of mesh required for 

material modeling, which directly reduce computational 

costs and time. This can be very useful when modeling 

of thin multi-layered anisotropic material panels and 

structures. In future work, a proposed approach can be 

potentially applied for efficient modeling of anisotropic 

media in 3-D space. 
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