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Abstract ─ A perturbation decomposition-polynomial 

chaos expansion method is presented to evaluate the 

electromagnetic effects of random nonuniform 

transmission line under plane-wave illumination. The 

nonuniformity is represented as perturbation with respect 

to the reference uniform transmission line. Moreover, by 

expanding the unknown random parameters in terms of 

orthogonal polynomials, the stochastic transmission  

line equation is projected into a set of deterministic 

transmission line equations. Numerical simulations are 

presented for several typical deterministic and random 

nonuniform transmission lines above an ideal ground. 

The results show that the proposed perturbation 

decomposition-polynomial chaos expansion method is 

accurate and computationally efficient compared with 

the traditional uniform cascaded section method and 

Monte Carlo method. 

 

Index Terms ─ Deterministic nonuniform transmission 

line, parameter uncertainty, perturbation decomposition, 

plane-wave illumination, polynomial chaos expansion, 

random nonuniform transmission line. 
 

I. INTRODUCTION 
Cables and wires are usually the most sensitive parts 

in the electromagnetic compatibility problems of electrical 

and electronic systems. Owing to the mechanical 

manufacturing tolerances or manual installation manner 

errors, uncertainty [1,2] and nonuniformity [3-8] of 

transmission line (TL) are often encountered in practical 

applications, such as linearly tapered micro-strip line [3], 

interconnects subject to line-edge roughness [4], twisted 

pair [5], and undesired asymmetry differential lines [6], 

which may significantly affect the signal integrity and 

immunity. The intentional/unintentional electromagnetic 

interference in the free space may also aggravate the 

distortion effect. Therefore, it is of great significance to 

analyze the effect of randomness and nonuniformity on 

the response of TL under plane-wave illumination. 

Transmission line theory [9] has been investigated 

for a long time. For a deterministic uniform transmission 

line (DUTL), the coupling mechanism is well established 

and has been overviewed in [10,11]. For a random 

uniform transmission line (RUTL), several methods 

have been proposed [12-16]. A direct method is the 

Monte Carlo (MC) method [12,13], which collects 

statistical information through huge samplings of 

random parameters to perform extensive repeated 

simulations of deterministic models. Although robust, 

MC has a large computational load. Another approach 

called the polynomial chaos expansion (PCE) method 

[14-16], which describes the statistical behavior through 

the orthogonal basis of a series of random variables, is 

fairly accurate and much faster than the MC method.  

For a deterministic nonuniform transmission line 

(DNTL), the conventional approach is the uniform 

cascaded section (UCS) method [9]. UCS tackles the 

nonuniformity problem by subdividing the DNTL into 

large local uniform sections [17-21], thus leading to long 

computation time. Recently, a computationally efficient 

method called the equivalent source method [22] has 

been proposed to cope with DNTL. Subsequently, it  

has been extended to the perturbation decomposition 

technique (PDT) to cope with the crosstalk problem  

of different types of DNTL [3-8]. However, studies on 

the electromagnetic effect of random nonuniform 

transmission lines (RNTL) are scant. Moreover, the PDT 

is limited to DNTL, and cannot be directly applied to 

RNTL. So far, the PDT has only been applied to the 

crosstalk problems, and the ability of coping with DNTL 

under plane-wave illumination has not been verified. 

Therefore, an Nth-order perturbation decomposition-

Mth-order polynomial chaos expansion method ((Nth, 

Mth)-order PD-PCE) is presented to analyze the RNTL 

response under external plane-wave illumination in  

this paper. The nonuniformity of TL is modeled as an 

equivalent distribution source for the reference uniform 

transmission line. Subsequently, based on the orthogonal 
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polynomial expansion of unknown random parameters, 

the stochastic transmission line equation is projected into 

a set of deterministic transmission line equations through 

a stochastic Galerkin method.  

The rest of this paper is structured as follows. The 

derivation of the PD-PCE method is demonstrated in 

Section II. In Section III, the feasibility and strength of 

the PD-PCE method are validated by applying it to 

several typical simplifying RNTLs. Finally, a summary 

is given in Section IV. 
 

II. PERTURBATION DECOMPOSITION-

POLYNOMIAL CHAOS EXPANSION 

METHOD 
In this section, the general solution of RNTL under 

plane-wave illumination is derived. Four cases of  

RNTL commonly observed in practical applications are 

considered, including vibrating RNTL, as shown in Figs. 

1 (a)–(b), and floating RNTL, as shown in Figs. 1 (c)–(d). 

The radius of the four cases of RNTL is ar . The left and 

right ends of RNTL are terminated with the impedances 

LZ  and RZ , respectively. The heights of the four cases 

of RNTL are defined as follows: 

 
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where  2, 2z L L  , L is the length of the RNTL in the 

z direction. 1H  is the height of the RNTL at 0z  , 2H  

is the height of the RNTL at 2z L , ε  is the normalized 

random variable, which is assumed to be uniformly 

distributed in [-1,1]. hδ  is the uncertainty coefficient.  

In particular, for case c and case d, the RNTL 

becomes DNTL when 0hδ   and 1 2H H , and the 

RNTL becomes RUTL when 0hδ   and 1 2H H . Both 

DNTL and RUTL are special cases of RNTL. 

There are two main steps for the construction of the 

proposed (Nth, Pth)-order PD-PCE method for RNTL. In 

the first step, the perturbation solution for the RNTL 

under plane-wave illumination is derived; therefore, the 

RNTL equation is converted to an RUTL equation. In the 

second step, the RUTL equation is converted to a DUTL 

equation by applying the polynomial chaos theory.  
 

A. Plane wave parameters  
As shown in Fig. 2, considering an incident plane-

wave electric field incE  with amplitude 0E  described by: 

  -

0= + + ,inc jk r

x y zE E e x e y e z e   (2) 

where r  is the observation position vector, and the 

scalar components xe , ye , and ze  in the direction of unit 

vectors x̂ , ŷ , and ẑ , respectively, are defined as: 

cos cos cos sin sin ,

cos cos sin sin cos ,

cos sin ,

x

y

z

e

e

e

    

    

 

 

 

 

 (3) 

where   is the polarization angle,   is the elevation 

angle, and   is the azimuth angle. The wave vector k  

with free space wave number 
0k  is defined as: 

0 0 0

ˆ ˆ ˆ

ˆ ˆ ˆsin cos sin sin cos

x y zk k x k y k z

k x k y k z,    

  

  
 (4) 

where xk , yk , and zk  are the components of the wave 

vector along the unit vectors x̂ , ŷ , and ẑ , respectively. 
 

x

h

h

1H

E

2L 2L z0  
(a) 

h

h

1H 2H

2L 2L z0

E

(b) 

h

h
2H

1H

2L 2L z0

E

 
(c) 

h

h

1H
2H

2L 2L z0

E

 
(d) 

 

Fig. 1. (a) Case a: Random vibrating nonuniform straight 

transmission line. (b) Case b: Random vibrating 

nonuniform bending transmission line. (c) Case c: 

Random floating nonuniform straight transmission line. 

(d) Case d: Random floating nonuniform bending 

transmission line. 
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Fig. 2. Plane-wave incident direction. 

 

Considering the reflection effect of ground, total 

electric field is the sum of the incident and reflection 

fields, and the z component ( )tot

zE z,ε  and x component 

( )tot

xE z,ε  of the total electric field are given as follows: 

   

   

-

0

-

0

( ) = -2 sin ( ) ,

( ) =   2 cos ( ) .

y z

y z

j k y k ztot

z z x

j k y k ztot

x x x

E z,ε jE e k h z,ε e

E z,ε E e k h z,ε e


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 (5) 

 

B. Perturbation decomposition of random nonuniform 

transmission line equation 

The Agrawal formula [11], which describes field-to-

line coupling for an RNTL, is given by: 

       

     

', , , , ,

, , , 0,

s

F

s

d
V z j L z I z V z

dz

d
I z j C z V z

dz

    

   

 

 

 (6) 

where  ,sV z   and  ,I z   define the random scattering 

voltage and current of RNTL, respectively.  ,L z   and 

 ,C z   are the per unit length (p.u.l.) random inductance 

and capacitance of the RNTL, respectively. The distributed 

voltage source  ' ,FV z   is defined as: 

           ' , , cos , , sin , ,tot tot

F z xV z E z z E z z           (7) 

where  ,z   is the position-dependent random 

inclination angle of the RNTL. The total voltage of the 

RNTL is defined as: 

     , , ,s exV z V z V z    , (8) 

where the excitation voltage  ,ex z V  is defined as: 

 
 ,

0
, ( ) .

h zex tot
xV z E z,ε dx


    (9) 

To deal with the nonuniform problem of the TL,  

the perturbation decomposition technique [5] is applied 

to the scattering voltage, current, capacitance, and 

inductance as follows: 
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N

N
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   

 
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(10) 

where 
0

sV and 
0I  are the 0th-order perturbation random 

scattering voltage and current, respectively. s

nV  and 
nI  

 1,2,...,n N  are the nth-order perturbation random 

scattering voltage and current, respectively. N is the 

truncated order. 
0C  (

1C ) and 
0L  (

1L ) are the 0th-order 

(1st-order) perturbation p.u.l. random capacitance and 

inductance, respectively.  

Substituting equation (10) into equation (6), the 

RNTL equation can be decomposed to 0th-order and  

nth-order  1,2,...,n N  RUTL equations, as follows: 
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 (12) 

For the 0th-order perturbation equation (11), the 

excitation term directly originates from the incident 

plane-wave. For the nth-order perturbation equation (12), 

the excitation terms originate from the (n-1)th-order 

perturbation scattering voltage and current. 
 

C. Polynomial chaos expansion  

To solve the RUTL equations (11) and (12), the PCE 

method [14] was adopted to expand the random variable 

in equations (11) and (12) as follows: 

           
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(13a) 
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where ,

0

s pV  ,s p

nV  and 
0

pI  p

nI  represent the (0th, pth)-

order ((nth, pth)-order) PD-PCE coefficients for scattering 

voltage and current, respectively. 'p

FV  represents the pth-

order PCE coefficients for the distributed voltage source. 

0

pC   1

pC  and 
0

pL  1

pL  represent the (0th, pth)-order ((1st, 

pth)-order) PD-PCE coefficients for p.u.l. capacitance and 

inductance, respectively.  p   is a pth-order polynomial. 

The random variable is assumed to be uniformly 

distributed; hence, the Legendre orthogonal polynomials 

are appropriate for this case [14], as shown in Table 1. 

For the random variables of number q and order m, the 

total number of expansion items is ( +1)!= ( + )!/ ( ! !)P p q p q . In 

this study, there is only one random variable; hence, q=1. 
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Table 1: Legendre polynomial for one random variable 

Order p pth-order polynomial 
p  ,p p   

0 1 1 

1   1/3 

2  23 -1 2  1/5 

… … … 

p  21
-1

2 !

p

p p
ε

p ε




  1 2 +1p  

 

Substituting equation (13) into (11), the original 0th-

order perturbation RUTL equation is expanded as: 
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(14) 

where
0P and 

TP  are the expansion orders. Through a 

stochastic Galerkin method, equation (14) was projected 

to the Legendre orthogonal basis as follows: 
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(15) 

The symbol  ,   represents the inner product over 

the definition domain of the random variable. Solving 

(15), the following 0th-order perturbation augmented 

equation in matrix form can be obtained. 
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where  0
s zV  and  0 zI  are the 0th-order perturbation 

 0 +1 1P  scattering voltage and current vector, respectively. 

 '
F zV  is the 0th-order  0 +1 1P   distributed voltage 

source vector. 0L  and 0C  are the 0th-order perturbation 

   0 0+1 +1P P  inductance and capacitance matrix, 

respectively. The ith row and jth column  0, 1, 2,..., 1i j P   

of 0L  and 0C  are given as follows: 

 
0 0

0 0 0 0
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where,  

 , , .pji p j i i i       (18) 

Similarly, substituting equation (13) into (12), the 

original nth-order perturbation RUTL equation becomes: 
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(19) 

where 1+n T n-P P P  1,2,...,n N . Projecting equation 

(19) to the Legendre orthogonal basis, the following 

equations can be obtained: 
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(20)  

Solving (20), the nth-order perturbation augmented 

equation in matrix form can be obtained as follows: 

 
 

 

 

 

 

 

'
0

'
0

,

ns s
Fn n

n
n n F

zjz zd

jdz z z z





     
       

          

V0 LV V

C 0I I I
 (21) 

where the nth-order distributed voltage source vector 

 'n
F zV  and the distributed current source vector  'n

F zI  

are: 

 
 

 

 

 

'
1 1

'
1 1

,

n s
F n

n
nF

z j z

j zz








    
     

       

V 0 L V

C 0 II
 (22) 

where 1L  and 1C  are the 1st-order perturbation 

   1 1+1 +1n nP P   inductance and capacitance matrix, 

respectively. The ith row and jth column  , 1,2,..., 1ni j P 

of 1L  and 1C  are given as follows: 

 
1 1

1 1 1 1

0 0

, .
n nP P

p p
ij pji ij pji

p p

L C 
 

 

  L C  (23) 

 

D. Modal decomposition  

As 0L  and 0C  are full matrixes, the scattering 

voltage and current vector in (16) are coupled. The 

similarity transformation method [9] is used to decouple 

equation (16). Through voltage (current) transformation 

matrix VT  ( IT ), the voltage vector 0
s

V and current vector 

0I  were cast into modal voltage vector ,0
s

mV  and modal 

current vector ,0mI  as follows: 

 
 

 

 

 
,00

,00

.

ss
V m

I m

zz

zz

    
     

       

T 0 VV

0 T II
 (24) 

Substituting equation (24) into equation (16), the  
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following 0th-order perturbation decoupled modal TL 

equation can be obtained:  

 
 

 

 

 
 '

,0,0 ,0

,0,0 ,0

,

s s
mm m Fm

mm m

jz zd z

jdz z z





      
       

         

0 LV V V

C 0I I 0
 (25) 

where ,0mL  and ,0mC  can be obtained by: 

 
1 1

,0 0 ,0 0,  ,m V I m I V
  L T L T C T C T  (26) 

and the modal distributed voltage source 

   ' 1 '
Fm V Fz zV T V . 

Similarly, the nth-order perturbation equation (21) 

can be decoupled as follows:  

 

 

 

 

 

 

'
,0, ,

'
,0, ,

,

ns s
m Fmm n m n

n
mm n m n Fm

j zz zd

jdz z z z





     
       

          

0 L VV V

C 0I I I
 (27) 

where the nth-order modal scattering voltage  ,
s

m n zV  and 

modal current  ,m n zI  can be obtained as follows: 

 
 

 
 

 
,

,

,

s s
Vm n n

Im n n

z z

z z

    
    

       

T 0V V

0 TI I
 (28) 

and the nth-order modal distributed voltage source 

 'n
Fm zV  and current source  'n

Fm zI  can be obtained as 

follows: 

 
 

 

 

 

' '1

' '1
.

n n
Fm FV

n n
Fm FI

z z

z z





    
    

        

V VT 0

I I0 T
 (29) 

 

E. Boundary condition 

Proper boundary conditions should be imposed to 

obtain the solution of equations (25) and (27). Using 

Thevenin equivalents of line terminations, the boundary 

condition for equations (11) and (12) can be written as: 

 
     

     

0 0

0 0

- 2, = - 2, - 2, ,

2, = 2, + 2, ,

s ex

L

s ex

R

V L V L Z I L

V L V L Z I L

  

  
 (30a) 

 
   

   

- 2, = - 2, ,

2, =  2, .

s

n L n

s

n R n

V L Z I L

V L Z I L

 

 


 (30b) 

Substituting equation (13a) into equations (30a) and 

(30b), and expanding the excitation voltage  ,ex z V  

with the same polynomials, the 0th-order and nth-order 

perturbation random boundary condition in equations 

(30a) and (30b) can be expanded into equations (31a) 

and (31b), respectively: 

           

           

0 0 0

0 0 0

,

0 0

=0 =0 =0

,

0 0

=0 =0 =0

- 2 = - 2 - 2 ,

2 = 2 + 2 ,

P P P
s p ex p

p p p L p

p p p

P P P
s p ex p

p p p R p

p p p

V L V L - Z I L

V L V L Z I L

     

     

  

  

 
(31a) 

 
       

       

,

=0 =0

,

=0 =0

- 2 = - 2 ,

2 = 2 .

n n

n n

P P
s p p

n p L n p

p p

P P
s p p

n p R n p

p p

V L -Z I L

V L Z I L

   

   

 

 

 
(31b) 

Similarly, through a stochastic Galerkin method, 

projecting equations (31a) and (31b) to the Legendre 

orthogonal basis, the 0th-order and nth-order perturbation 

boundary conditions can be obtained as follows: 

 
     

     

,

0 0

,

0 0

- 2 = - 2 - - 2 ,

2  = 2 + 2 ,

s m ex m

m L

s m ex m

m R

V L V L Z I L

V L V L Z I L
 (32a) 

 
   

   

,

,

- 2 = - 2 ,

2 =  2 .

s m m

n L n

s m m

n R n

V L Z I L

V L Z I L


 (32b) 

 

F. RNTL terminal solution 

Given the boundary conditions, the general solution 

of the 0th-order and nth-order perturbation modal 

equation can be easily solved, and thus, the final terminal 

solution for the voltage (current) of RNTL can be obtained 

by substituting these modal terms into equations (24), 

(28), (13), (10), and (8). For brevity, the solution is 

omitted here.  

 
G. DNTL terminal solution 

For DNTL, namely 0h   and 
1 2H H  in case c 

and case d, the induced voltage can be obtained by only 

taking the (Nth, 0th)-order PD-PCE solution. 

 
H. RUTL terminal solution 

For RUTL, namely 0h   and 
1 2H H  in case c, 

the terminal solution can be obtained by only taking the 

(0th, Pth)-order PD-PCE solution. 

 

III. NUMERICAL RESULTS AND 

APPLICATIONS 
In this section, numerical simulations were performed 

to validate the proposed (Nth, Pth)-order PD-PCE method 

for the RNTL above an ideal ground under plane-wave 

illumination. For all cases, the length of the TLs is 

= 1 mL , the radius is 0.5 mmar  , and terminal resistances 

are 50 L RZ Z   . The amplitude of the electric field is 

0 100 V / mE   and the frequency band ranges from 5 MHz 

to 4 GHz. The frequency interval was set to 5 MHz. 

Without loss of generality, the incident angle was set as 

/ 3   , / 6   , and / 6   . 

 

A. Deterministic response analysis 

First, the deterministic response of a nonuniform TL 

under plane-wave illumination was analyzed to validate 

the proposed method. The parameters of the TLs are 

shown in Table 2, where DUTL is chosen for comparison. 

The UCS method [9], which divides the DNTL into 600 

local uniform segments to ensure sufficient accuracy, 

was chosen for comparison. 
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Table 2: Geometrical parameters of transmission lines 

Analyzing Scenarios 
H1 

/mm 

H2 

/mm 

𝜹𝒉 

/mm 

A.1 case c: DNTL 12 14 0 

Comparison case c: 

DUTL 
12 12 0 

A.2 case d: DNTL 10 12 0 

Comparison case d: 

DUTL 
12 12 0 

 

 
  (a) 

 
  (b) 

 

Fig. 3. Magnitude of induced voltage for DNTL of case 

c and the DUTL. (a) Induced voltage at the left end of 

the TL, and (b) induced voltage at the right end of TL.  

 

A.1. DNTL of case c 

Figures 3 (a) and (b) show the induced voltage at the 

left and right ends of the DNTL of case c, respectively. 

The blue curves are the results of the (1st, 0th)-order PD-

PCE method. The dotted red curves are the results of  

the UCS method. It can be observed that at lower 

frequencies, the induced voltages derived from the PD-

PCE method were consistent with those of UCS method 

at both ends of DNTL, whereas for frequencies above 

approximately 2 GHz, the induced voltage at the left end 

shows discrepancies for the two methods.  

Figures 3 (a) and (b) also show the induced voltage 

(dashed green curves) at the left and right ends of the 

DUTL, respectively. For most frequencies, the induced 

voltage of the DNTL is larger than that of the DUTL. 

 
  (a) 

 
  (b) 

 

Fig. 4. Magnitude of induced voltage for the DNTL of 

case d and the DUTL. (a) Induced voltage at the left end 

of TL, and (b) induced voltage at the right end of TL.  

 

A.2. DNTL of case d 

Figures 4 (a) and (b) show the induced voltage at the 

left and right ends of the DNTL of case d, respectively. 

The blue curves are the results of the (1st, 0th)-order PD-

PCE method for the DNTL. The dotted red curves are the 

results of the UCS method for the DNTL. Moreover, it 

can be observed that the induced voltage at the left end 

of the TL derived from the PD-PCE method is consistent 

with that derived from the UCS method at lower 

frequencies. However, for frequencies above 

approximately 2 GHz, the induced voltage at the left end 

shows discrepancies for the two methods. For the 

induced voltage at the right end of DNTL, at most 

frequency points, the results of the two methods are 

consistent with each other, which confirms the validity 

of the proposed method. 

The induced voltage (dashed green curves) at the 

left and right ends of the DUTL is also shown in Figs.  

4 (a) and (b), respectively. For most frequencies, the 

induced voltage of the DNTL is smaller than that of the 

DUTL, especially at lower frequencies. 

Table 3 shows the comparison of computation time 

between the PD-PCE method and the UCS method. The 

simulations were performed on a workstation with an 

Intel Xeon CPU X5670 with clock frequency 2.93 GHz 

and 16 GB RAM. The (1st, 0th)-order PD-PCE method 
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takes approximately 9.9 s for 800 frequency points, 

whereas the UCS method takes approximately 890.2 s 

for 800 frequency points. The proposed (1st, 0th)-order 

PD-PCE method is approximately 89.9 times faster than 

the UCS method while maintaining the same level of 

accuracy.  

 
Table 3: CPU time of the (1st, 0th)-order PD-PCE method 

and UCS method 

Method Order Simulation Time /s 

UCS -- 890.2 

PD-PCE (1st, 0th) 9.9 

 
Table 4: Parameters of the transmission line  

Analyzing Scenarios 
H1 

/mm 

H2 

/mm 

𝜹𝒉 

/mm 

B.1 

case a 10 -- 2 

Comparison case a: 

DUTL 
10 -- 0 

B.2 

case b 8 10 1 

Comparison case b: 

DUTL 
10 10 0 

B.3 

case c 10 12 2 

Comparison case c: 

RUTL 
10 10 2 

B.4 

case d 8 10 2 

Comparison case d: 

RUTL 
10 10 2 

 
B. Statistical response analysis of RNTL  

In this section, the validity of the proposed PD-PCE 

method was confirmed. The MC method was chosen for 

comparison, which required 1000 simulations to provide 

sufficient samplings. The four cases of RNTL shown in 

Fig. 1 were analyzed. For case a and case b, DUTL was 

chosen for comparison. For case c and case d, RUTL was 

chosen for comparison. The parameters of the lines are 

shown in Table 4. 

 
B.1. Random nonuniform transmission line of case a 

Figs. 5 (a) and (b) show the probability density 

function (pdf) of the magnitude of the induced voltage at 

the right end of the RNTL for case a at f = 800 MHz and 

f = 3.5 GHz, respectively. The red curves are the results 

of the (1st, 5th)-order PD-PCE method, and the blue cross 

curves are the results of the MC method. It can be 

observed that the results of the two methods are 

consistent with each other at f = 800 MHz. However, 

there are minor discrepancies between the two methods 

at f = 3.5 GHz. This may be because the electromagnetic  

response of the TL is more sensitive to the variance of 

geometrical parameters at high frequencies. 

Figures 6 (a) and (b) show the mean value and 

variance of the induced voltage (blue curves) at the right 

end of the RNTL of case a derived using the (1st, 5th)-

order PD-PCE method, respectively. For comparison, 

Fig. 6 (a) shows the induced voltage at the right end of 

the DUTL (green dotted curves). It can be observed that 

the mean value of induced voltage of the RNTL equals 

the voltage of the DUTL, whereas the variance of RNTL 

exhibits periodical fluctuation.  
 

 
 (a) 

 
 (b) 

 

Fig. 5. Probability density function of induced voltage at 

the right end of the RNTL of case a: (a) f = 800 MHz, (b) 

f = 3.5 GHz. 

 
  (a) 
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  (b) 

 

Fig. 6. (a) Induced voltage at the right end of the DUTL 

and mean value of induced voltage at the right end of the 

RNTL of case a. (b) Variance of the induced voltage at 

the right end of the RNTL of case a. 
 

B.2. Random nonuniform transmission line of case b 

Figures 7 (a) and (b) show the pdf of the magnitude 

of the induced voltage at the right end of the RNTL of 

case b at f = 800 MHz and f = 3.5 GHz, respectively. The 

red curves are the results of the (1st, 5th)-order PD-PCE 

method, and the blue cross curves are the results of the 

MC method. It can be observed that the results of the two 

methods are consistent with each other. 
 

 
  (a) 

 
  (b) 
 

Fig. 7. Probability density function of induced voltage at 

the right end of the RNTL of case b: (a) f = 800 MHz, (b) 

f = 3.5 GHz. 

Figures 8 (a) and (b) show the mean value and 

variance of induced voltage at the right end of the RNTL 

of case b obtained from the (1st, 5th)-order PD-PCE 

method. Figure 8 (a) also shows the induced voltage at 

the right end of the DUTL. It can be observed that the 

mean value of voltage of the RNTL deviates from the 

voltage of the DUTL at lower frequencies, whereas the 

variance of the RNTL shows strong periodical fluctuation. 
 

 
  (a) 

 
  (b) 

 

Fig. 8. (a) Induced voltage at the right end of the DUTL 

and the mean value of induced voltage at the right end of 

the RNTL of case b. (b) Variance of the induced voltage 

at the right end of the RNTL of case b. 
 

B.3. Random nonuniform transmission line of case c 

Figures 9 (a) and (b) show the pdf of induced 

voltage at the right end of the RNTL and RUTL of case 

c at f = 800 MHz and f = 3.5 GHz, respectively. It can be 

observed that, at f=800 MHz, the results of the two 

methods for both cases are consistent with each other, 

whereas at f = 3.5 GHz, there is a slight deviation 

between the results of the proposed PD-PCE method and 

the MC method.  It can also be observed that the pdf of 

induced voltage of the RNTL is similar to that of the 

RUTL except with a different mean value.  
 

Figures 10 (a) and (b) show the mean value and 

variance of induced voltage at the right end of the RNTL 

and RUTL of case c derived from the (1st, 5th)-order PD-

PCE method, respectively.  It can be observed that the 

mean value of voltage of the RNTL was larger than that 

of the RUTL at some frequency points, whereas the 

variance was almost the same. 
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  (a) 

 
  (b) 

 

Fig. 9. Probability density function of induced voltage at 

the right end of RNTL and RUTL of case c: (a) f = 800 

MHz, (b) f = 3.5 GHz. 
 

 
 (a) 

 
 (b) 

 

Fig. 10. (a) Mean value of induced voltage at the right 

end of the RNTL and RUTL of case c. (b) Variance of 

induced voltage at the right end of the RNTL and RUTL 

of case c. 

B.4 Random nonuniform transmission line of case d 

Figures 11 (a) and (b) show the pdf of induced 

voltage at the right end of the RNTL and RUTL of case 

d at f = 800 MHz and f = 3.5 GHz, respectively. The results 

derived from the proposed PD-PCE method and the MC 

method were consistent with each other at f = 800 MHz, 

whereas the results of the two methods show a slight 

deviation at f = 3.5 GHz. It can also be observed that the 

pdfs of the RNTL and RUTL were almost the same. 
 

 
 (a) 

 
  (b) 

 

Fig. 11. Probability density function of induced voltage 

at the right end of the RNTL and RUTL: (a) f = 800 MHz, 

and (b) f = 3.5 GHz. 
 

Figures 12 (a) and (b) show the mean value and 

variance of induced voltage at the right end of the RNTL 

and RUTL of case d, respectively. It can be observed that 

the mean value of voltage of the RNTL was slightly 

larger than that of the RUTL, whereas the variance was 

almost the same. 
 

 
  (a) 
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  (b) 

 

Fig. 12. (a) Mean value of induced voltage at the right 

end of the RNTL and RUTL of case d. (b) Variance of 

induced voltage at the right end of the RNTL and RUTL 

of case d. 

 

Table 5 presents the computation time of the 

proposed (1st, 5th)-order PD-PCE method and MC method. 

The (1st, 5th)-order PD-PCE method takes approximately 

9.8+6.8=16.6 s for 800 frequency points, whereas the 

MC method takes approximately 2.1*1000=2100 s for 

800 frequency points. The proposed (1st, 5th)-order PD-

PCE method is approximately 126.5 times faster than the 

MC method without losing accuracy.  

 

Table 5: CPU time of (1st, 5th)-order PD-PCE method and 

MC method 

Method 
PCE 

Projection/s 

Total 

Time/s 

Repeat 

Time 

MC 0 2.1*1000 1000 

PD-PCE 9.8 6.8 2+6 

 

IV. CONCLUSION 
In this paper, an (Nth, Pth)-order PD-PCE method for 

the analysis of random nonuniform transmission line 

response under plane-wave illumination is presented. 

Simulation results show that the PD-PCE method is 

accurate and computationally efficient compared with 

the UCS and MC methods. Under the assumption of 

weak level of nonuniformity, small number of random 

variables, and lower frequency band, this method is 

effective and can provide quantitative guidance for 

evaluating the effects of the nonuniformity and 

uncertainty of transmission lines on the reliability of 

electrical systems. 
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