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Abstract ─ In order to meet the highly accurate 

requirements of nowadays scattering and antenna 

problems, the finite element method requires the use of 

very accurate mesh truncations techniques able to absorb 

any outgoing wave completely. In this paper a novel 

implementation of the finite element mesh truncation 

technique called Finite Element-Iterative Integral 

Equation Evaluation (FE-IIEE) is studied. This method 

can provide a numerical exact radiation boundary 

condition while the original sparse and banded structure 

of the finite element method (FEM) matrix is retained. 

Also, an efficient parallel multilevel fast multipole 

algorithm (MLFMA) is included to drastically accelerate 

the time-consuming near field calculation process 

required by the truncation technique. In order to achieve 

a high parallel efficiency, both algorithms have been 

implemented together from scratch, being able to run 

over several thousands of CPU cores. Through 

comparisons with commercial software such as HFSS, 

the accuracy and efficiency of the method are validated 

showing excellent performance. Finally, a large 100-

elements array antenna with more than 24 million 

unknowns is effectively analyzed using 2560 CPU cores. 

 

Index Terms ─ Finite element method (FEM), integral 

equation, mesh truncation technique, multilevel fast 

multipole algorithm (MLFMA). 
 

I. INTRODUCTION 
Nowadays, the analysis of large radiation/scattering 

problems is of crucial interest in military (and civil) 

nautical and aeronautical industry. The use of higher 

working frequencies of modern radars makes the 

analysis, despite the constant enhancements in computer 

power, a challenge, especially due to the large electrical 

sizes of the objects.  

Among other numerical techniques, the finite 

element method (FEM) has demonstrated to be a 

powerful and flexible computational tool for solving 

large radiation/scattering problems, even when the 

models present very complex materials [1, 2]. In order to 

analyze these open region problems, FEM requires the 

use of mesh truncation techniques that transform the 

infinite free space into a finite computation domain  

[3]. It is important to mention that the truncation 

methodologies have a great impact on the accuracy and 

efficiency of FEM, especially scattering objects due to 

their low RCS levels. 

In general, the traditional finite element truncation 

techniques can be roughly divided into two classes: local 

mesh truncation technologies such as absorbing boundary 

condition (ABC) [3] and perfectly matched layers (PML) 

[4] and global mesh truncation technologies such as  

the finite element - boundary integral (FE-BI) method  

[5-7]. The formers are easy to implement, but their 

computational accuracy is unpredictable because of its 

dependence on many factors such as the distance away 

from the objects and the shape of truncation boundary. 

The latter, although can provide exact radiation 

boundary conditions, presents a partly full system of 

equations which makes the use of direct solution methods 

an impossible task forcing us to employ iterative solution 

strategies (with the consequence convergence issues). 

Under this scenario, a mesh truncation algorithm 

called finite element-iterative integral equation evaluation 

(FE-IIEE) is studied in this paper [8-12]. This truncation 

technique provides an exact radiation boundary condition 

regardless the distance to the sources of the problem 

while the original sparse and banded structure of the 

FEM matrix is retained. The convergence of this method 

is assured by using a convex truncation boundary, 

moreover, as the distance of truncation boundary away 

from the objects is larger, faster rates of convergence  

are obtained [10]. Due to these advantages, it has been 

extensively hybridized mainly with high frequency 

methods in the past decades [8-9]. In recent works, 

authors have used it for the analysis of the unit cell of 

infinite array antennas as in [12]. However, its effective 
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application in complex and electrically large 

electromagnetic open region problems is still limited due 

to the extremely large time-consuming task requires 

during the near field calculation in the truncation process.  

In this paper, a massively parallel efficient version 

of the multilevel fast multipole algorithm (MLFMA) [13] 

is employed to overcome this limitation, and drastically 

accelerate the near field calculation. In order to achieve 

a high parallel efficiency, both techniques have been 

implemented together from scratch, being able to run 

over several thousands of CPU cores. Also, complex 

numerical examples from real practical applications are 

analyzed to demonstrate the accuracy and efficiency of 

the proposed method. 

The rest of the paper is organized as follows. The 

theory of FE-IIEE is presented in Section II. Section III 

describes the implementation of the parallel MLFMA for 

near field computing acceleration. Section IV contains 

the numerical results. Finally, our conclusions are 

gathered in Section V. 

 

II. BASIC THEORY OF FE-IIEE 
Let us start considering a typical FE-IIEE setup for 

a general radiation or scattering problem as illustrated  

in Fig. 1. The original infinite computational domain  

is divided into two overlapping domains: the infinite 

domain (ΩEXT) exterior to the auxiliary boundary S’ 

which generally is the object surface and a FEM domain 

(ΩFEM) truncated by the surface S. Thus, the mentioned 

overlapping region is limited by S’ and S. The boundary 

S may be arbitrarily shaped but typically it is selected to 

be conformal to S’. 
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Fig. 1. A typical FE-IIEE method for general radiation 

or scattering problems. 

 

The distribution of the electric field E in the domain 

ΩFEM is obtained by solving the following equations: 

  
1

2 FEM

0 0 0( ) j     in ,imp
rr k k  



     E E = J  (1) 

 PEC= 0       on , n E  (2) 

 
1

PMC( ) = 0       on ,r


  n E  (3) 

   
1

( )

0( ) j =        on i

r k S


    n E n E n  , (4) 

where 
r and r  are the relative permeability tensor 

and relative permittivity tensor of the medium 

respectively, k0 represents the wave number in free space, 

η0 refers to the free space wave impedance, Jimp is an 

impressed electric current excitation in the FEM domain, 

j denotes the imaginary unit, and n  is the external 

normal unit vector of the corresponding surface. 

Equations (2), (3), and (4) describe Dirichlet, Neumann 

and Cauchy boundary conditions, respectively.  

The FE-IIEE method starts its execution calculating 

the electric field E in the ΩFEM domain by solving the 

system of equations introduced previously. Then, the 

residual of the Cauchy boundary condition expressed in 

(4) (φ(i) term) is updated using the resulted electric field 

E, the equivalent electric current Jeq and the equivalent 

magnetic current Meq on the boundary S’. These currents 

are used to calculate the electric field E field and its curl 

over the truncation boundary S. Thus, the residual φ(i) is 

updated and a new iteration of the algorithm starts. This 

process continues until the residual φ(i) satisfies an end 

condition (typically an error lower than 1e-5) that implies 

that the electromagnetic waves reaching the boundary S 

are completely absorbed. 

It is worth mentioning that the initial value of the 

residual φ(0) is zero for radiation problems. For scattering 

problems, the initial value of the residual φ(0) is the result 

of evaluating (4) with E=Einc being Einc the incident 

electric field over the boundary. 

The variational formulation of the problem described 

previously is: 
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where FEM( )curl H ； is the space of square integrable 

vector functions with square integrable curl, bI term 

corresponds to the internal excitations, and bφ term is 

related to the residual φ(i) value of equation (4). The 

discretization of the above variational formulation is 

achieved by using second order tetrahedral curl-

conforming basis functions that constitute a rigorous 

implementation of Nédélec first family of finite elements 

[14, 15]. 

According to (5), the final FE-IIEE system can be 

expressed in matrix equation block form as follows, 

  
III IS I

SI SS S 

    
     

     

bK K g

bK K g
, (6) 

where subscripts I and S represent the degree of 
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freedoms (DOFs) in interior domain and the DOFs on the 

boundary S, respectively. It is important to note that the 

original sparse and banded structure of the FEM matrix 

is retained since the integral equation effects (full dense 

equation blocks) are moved to the right-hand side (bφ 

term). In addition, the numerical cost of the second and 

subsequent iterations is very small since the factorization 

of the FEM matrix is performed only once at the first 

iteration (if direct solvers are used). 

 

III. IMPLEMENTATION OF PARALLEL 

MLFMA FOR NEAR FIELD COMPUTATION 

A. Implementation principle of MLFMA accelerated 

near field calculation 

As mentioned in the introduction, the FE-IIEE 

method still has a limitation due to the extremely large 

time-consuming task required during the truncation 

process. FE-IIEE needs to calculate the electric field 

distribution and its curl over the external boundary S 

using the following integral equations: 

  
' '

eq eq2
j ( ) ( ) ,

S S

= ωμ G R ds' G R ds'
k


     +E J I M  (7) 

 
' '

2

eq eq 2
j ( ) ( ) ( ) ,

S S

= G R ds' G R ds'
k

  


       +E J M I

 (8) 

where I  represents the unit dyad, ( )G R  is the Green’s 

function for the free-space. The computational complexity 

of the (7) and (8) is O(MN) where M and N are the 

number of Gaussian sampling points on boundary S’ and 

S respectively. The numerical cost of this process 

becomes extremely large when the electrical size of the 

model increases.  

As a fast algorithm, the MLFMA has been widely 

used in accelerating matrix-vector operations for the 

method of moment (MoM). Therefore, in order to 

overcome the current computational bottleneck presented 

in the FE-IIEE, seems natural to extend the MLFMA  

and accelerate (7) and (8). Specific details about the 

MLFMA implementation used in this paper are described 

next. 

Let us consider the two-dimensional problem 

depicted in Fig. 2. Firstly, the space that contains the 

field points and the source points is divided into small 

boxes by levels: the largest box is the level 0 (which 

surrounds the whole computational domain), then level 

0 is divided into smaller boxes obtaining the level 1  

and later the level 1 is divided obtaining the level 2. This 

process continues until the smallest box meets the 

standard (generally, when the side length is less than  

0.5 wavelength).  

Accordingly, the smallest boxes at the lowest level 

(here is level 3), contain three different types of non- 

empty group: the group with both field and source points, 

the group only with field points and the group only with 

source points. In the current implementation in this paper, 

different groups are marked with different Iflag values 

to avoid empty loops and invalid calculations, as 

displayed in Fig. 2. 
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Fig. 2 Configuration for MLFAM based near-field 

computation. 

 

Through the application of MLFMA, the near field 

computation in any non-empty groups which contains 

field points is divided into two categories: the field due 

to the nearby groups computed using (7) and (8); and,  

the far-region actions that are calculated through the 

expansion of the Green’s function in (7) and (8) into 

multipole forms by using the addition theorem and  

the plane wave expansion theory. After mathematical 

deduction we obtain that [16], 
2
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2
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 (10) 

where k̂  is the unit vector of plane wave expansion 

direction, r represents the field point coordinates, mr

refers to the center of filed point group, ˆ( )mJ k  and 

ˆ( )mM k  are the radiation pattern of the electric current 

and magnetic current, respectively, 'r  is the source 

point coordinates, m'r  denotes the center of source point 

group, and ˆ ˆ( , )L m m m mT kR  k R  is the translator operator 

between source point group 'm  and field point group m. 

By using such a scheme, the computational complexity 

for updating the residual φ (i) on the boundary S can  

be reduced from O(MN) to ( log( ))O MN MN . Figure 3 

shows the flowchart of the presented mesh truncation 

technique where the FE-IIEE and the MLFMA algorithms 

are working together. 
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Fig. 3. The program design flow of the FE-IIEE+MLFMA implemented in this paper. 

 

B. Parallel strategy 

The parallelization process of MLFMA has two 

basic partitioning strategies: spatial partitioning and 

direction partitioning [17]. The former refers to the 

division of all non-empty groups in each level to each 

MPI (Message Passing Interface) process, and the latter 

refers to the distribution of the wave plane directions 

belonging to each group into the different MPI process. 

The simple use of one of these strategies usually fails 

when scaling on a large number of CPU cores. Therefore, 

in order to improve the scalability of parallel MLFMA, 

these two parallel partitioning strategies must be 

combined together.  

Considering that the plane wave expansion of  

the electromagnetic current sources is the most time-

consuming process during the nearfield calculation, the 

non-empty groups in lowest level are firstly divided into 

Np portions according to the bisecting source point’s rule, 

where Np is the number of processes. Each portion is 

distributed to one MPI process. As an example, Fig. 4 

shows the case that the tree nodes from level 2 to level 4 

are distributed to 6 processes, where the process indices 

are denoted by P0~P5. It can be seen that the non-empty 

group (the tree node) at a certain level may be shared  

by different processes except those at the lowest level.  

If the non-empty group exists in many processes, its 

corresponding outgoing and incoming plane wave 

directions are equally distributed among the related 

processes. This adaptive partitioning strategy makes our 

parallel MLFMA to have no special requirements when 

choosing the number of processes.  

On the other hand, it is worth pointing out that 

during the translation period, if the outgoing plane waves 

are not in the current process, they need be received from 

the source group processes where they are located. 

However, for the near field calculation, we only need to 

consider the actions from the source points to the field 

points, in other words, the translation process does  

not need to be reciprocal. Thus, to avoid invalid 

communications messages when exchanging outgoing 

plane waves, a send list and a receive list are established 

in an earlier stage. The lists include the non-empty group 

indices, destination and source process indices, and the 

related outgoing plane wave directions. 

P0 P0 P1 P2 P2 P3 P3 P4 P4 P4 P5

P0

P1

P2

P3

P4

P5

P0~P5Level 2

Level 3

Level 4

θ

φ

 
 

Fig. 4. The parallel strategy of MLFMA for near field 

computation. 

 

IV. NUMERICAL RESULTS 
In this section, the results of different numerical 

examples are analyzed to demonstrate the performance, 

versatility and accuracy of the proposed method. 

Comparisons with well-known commercial software 

such as ANSYS HFSS [18] and FEKO [19], with in-

house codes and with experimental measurements are 

done to validate its results.  

Two different computer platforms are used to 

complete these simulations: the first one is a Dell T7600 

workstation with four 6-core 64-bit E5-2620 0 @2GHz 

CPUs and 192 GB of RAM; the second one is a Sugon 

HPC cluster with 548 compute nodes where each  

node has two 32-core AMD HygonGenuine 2.0 GHz 

processors (32×512 KB L2 Cache and 64 MB L3 Cache) 

and 256 GB RAM. The compute nodes are connected 

with InfiniBand switches to provide the highest 

communication speeds. 

 

A. Low scattering carrier 

The bistatic radar cross-section (RCS) analysis of a 

metal low scattering carrier object is considered first. 

Figure 5 shows the low scattering carrier model used in 

this benchmark.  

The model is illuminated by a negative x-axis 

incident y-axis polarized uniform plane wave at 3.0 GHz. 

The overall dimensions of the model are 0.731 m by 

0.524 m by 0.077 m corresponding to an electrical size 

of 7.31 λ by 5.24 λ by 0.77 λ. It is worth noting that due 

to the low scattering characteristics of the object, certain  

angles present very low RCS levels which are very 

difficult to catch numerically. For that reason, authors 
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consider that this model is a good benchmark to verify 

the level of accuracy of the proposed truncation 

technique. 

 

x z

y



 
 

Fig. 5. The metal low scattering carrier model. 

 

The results given by the presented FE-

IIEE+MLFMA technique are compared with those given 

by ANSYS HFSS, FEKO and an in-house higher order 

method of moments (HOMoM) solver [20]. In order to 

perform a full comparison with HFSS, all the truncation 

techniques available in this software, such as ABC, PML 

and FE-BI, are used in the analysis. The truncation 

boundary is placed at 0.2 λ from the target in the 

proposed method. In the case of HFSS, the truncation 

distance is left to its default option (0.333 λ). The other 

techniques use method of moments, so no truncation 

boundary is needed.  

Figure 6 shows the comparison between FEKO,  

the in-house HOMoM code and the proposed FE-

IIEE+MLFMA method. An excellent agreement is 

appreciated even for lowest RCS levels. The results  

of the pure FE-IIEE method without acceleration are  

also plotted. In this way, we can see how there are  

no differences between both versions of the FE-IIEE 

method indicating that the use of the MLFMA algorithm 

does not result in any loss of numerical accuracy. 

However, as it may be seen later, the use of the proposed 

FE-IIEE+MLFMA technique drastically reduces the 

total computational time of the analysis. 

The comparisons between the results given by  

HFSS using ABC, PML, and FE-BI as mesh truncation 

techniques and the proposed method are shown in Fig. 7. 

In this case, the adaptive convergence accuracy of HFSS 

was set to 10-3. As aforementioned, the model presents 

very low RCS values in certain angles that are difficult 

to catch numerically. In the case of the proposed method, 

the RCS values for these low level angles present an 

excellent agreement compared with the levels given by 

MoM. However, in the case of HFSS, there is a loss of 

accuracy and cannot match the required RCS levels. It is 

worth noting that a lower adaptive converge value (lower 

than 10-3) could mitigate this problem, however the 

amount of computational resources required to perform 

the simulation, makes this task almost impossible to 

conclude. 

 

 
 

Fig. 6. Bistatic RCS results of the low scattering carrier 

at 3.0 GHz in the xoy-plane calculated by the proposed 

method and MoM. 

 

 
 

Fig. 7. Bistatic RCS results of the low scattering carrier 

at 3.0 GHz in the xoy-plane calculated by the HFSS and 

the proposed method. 

 

The computational statistics for these simulations 

are given in Table 1. All simulations were performed 

using 12 CPU cores in the Dell T7600 workstation 

platform described above. It is worth pointing out that 

the residual value for the proposed method corresponds 

to the residual of the boundary condition given in (4) 

meanwhile the residual value for HFSS is its adaptive 

convergence accuracy. According to this data, we can 

see how the proposed parallel FE-IIEE+MLFMA 

technique drastically accelerates the simulation time 

while the memory level remains unchanged. 
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Table 1: Computational statistics of the proposed method and HFSS for the low scattering carrier 

Methods Residual 
Iteration 

Count 

Number of 

Tetrahedrons 
Unknowns 

Memory/ 

GB 

CPU 

Time/s 

FE-IIEE 10-4 8 104,261 710,500 12.57 1639 

FE-IIEE+MLFMA 10-4 8 104,261 710,500 12.57 190 

HFSS-ABC 
10-2 14 208,479 1,236,430 12.28 1100 

10-3 24 2,024,208 12,458,342 154.20 42,406 

HFSS-PML 
10-2 16 479,470 2,894,550 56.50 9291 

10-3 20 1,429,104 7,069,446 148.30 27,283 

HFSS-FE-BI 
10-2 12 92,271 586,264/30,078 2.75 924 

10-3 26 1,949,894 13,324,482/290,406 121.70 22,664 

 

B. Waveguide narrow-edge slot antenna 

In order to perform a further verification of the 

computational accuracy and efficiency of the proposed 

method, the radiation analysis of a waveguide narrow-

edge slot antenna is considered next. The model of this 

antenna is depicted in Fig. 8. 

 

x z

y


 
(a) 

 
(b) 

 

Fig. 8. The waveguide narrow-edge slot antenna model: 

(a) the simulation model, and (b) the measurement model. 

 

The waveguide is a WR-90 waveguide (X-band), 

with dimensions of 22.86 mm by 10.16 mm, and a wall 

thickness of 1.00 mm. The operation frequency is 9.35 

GHz and the rectangular wave ports placed on both ends 

of the waveguide are used to excite/match the antenna. 

The total number of tetrahedron used in the discretization 

of the model is 634,756 and the total number of 

unknowns is 4,055,352. This simulation is performed 

using 20 CPU cores in Dell T7600 workstation platform. 

The residual of the FE-IIEE truncation method is set to 

10-3.  

In this case, the results are compared with 

measurement and those given by the in-house HOMoM 

code. Figure 9 shows the normalized radiation pattern 

where a very good agreement between the results is 

appreciated. Table 2 summarizes the computational 

statistics of this example when using the FE-IIEE and  

the FE-IIEE+MLFMA method. It is worth noting that, 

for this moderate electrical size model, the near-field 

calculation takes more than 97% computation time of 

FE-IIEE before the MLFMA acceleration is adopted. 

The use of the proposed hybrid technique drastically 

reduces the computation time from 5777.6s to 238.4s 

taking the FE-IIEE capabilities to a higher level. 

 

 
 

Fig. 9. Normalized radiation pattern of the waveguide 

narrow-edge slot antenna in the yoz-plane. 

 

Table 2: Computational statistics of the FE-IIEE method 

and FE-IIEE+MLFMA method for the waveguide 

narrow-edge slot antenna 

Methods 
Iteration 

Count 

Near Field 

Calculation 

Time/s 

Total 

Time/s 

FE-IIEE 8 5777.6 5916.2 

FE-IIEE+MLFMA 8 238.4 374.1 

 

C. 100-elements array antenna 

A very common and typical application of FEM is 

the analysis of antenna arrays with complex materials 

and shapes. For this last example, the analysis of a large 

patch antenna array with 100 elements in a 5 by 20 

configuration is considered. Figure 10 shows the unit 

structure (a) and the whole antenna array (b).  

The relative permittivity of the dielectric substrate is 

2.65 with a delta tangent of 0.003. Each antenna unit is 
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fed through two coaxial cables at the bottom in equal 

amplitude and phase. The operation frequency is 3.2 

GHz. The total number of tetrahedron for this antenna  

is 3,839,140, obtaining a total number of unknowns  

of 24,530,828. The residual of the FE-IIEE truncation 

method is set to 10-3. A total of 2560 CPU cores in Sugon 

HPC cluster were used to perform this simulation which 

took 3.65 hours and 6.85 TB of memory. 
 

Dielectric 
substrate

1mm

2mm

13mm

End view

Dielectric 
substrate

 
(a) 

x y


z

 
(b) 

 

Fig. 10. The array antenna model: (a) the array unit 

structure, and (b) the array structure. 

 

 
 

Fig. 11. Radiation pattern of the 100-elements array 

antenna in the xoz-plane. 

 

Figure 11 shows the comparison of the radiation 

pattern for the elevation cut (xoz plane) between FE-

IIEE+MLFMA and the in-house higher order method of 

moments (HOMoM) code. A very good agreement is 

appreciated confirming that the proposed method can 

efficiently perform full-wave simulation of challenging 

electromagnetic problems. 

 

V. CONCLUSION 
In this paper, a very efficient parallel FEM mesh 

truncation technique is presented for the truncation of 

radiation and scattering problems. This method provides 

a numerical exact radiation boundary condition while the 

original sparse and banded structure of the finite element 

method (FEM) matrix is retained. The accuracy and 

effectiveness of the proposed technique are demonstrated 

through the analysis of several practical applications. 

Specially, the proposed method has shown better 

accuracy and efficiency than the commercial software 

HFSS in the analysis of the low scattering objects. As a 

final conclusion, authors believe that this truncation 

method is able to meet the highly accurate requirements 

of nowadays scattering and antenna problems. 
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