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Abstract ─ This paper compares and contrasts numerical 

electromagnetic (EM) prediction methods and parametric 

scattering models for radar signature prediction and 

feature extraction. 

 

Index Terms ─ Attributed scattering centers, radar cross 

section, radar feature extraction, scattering prediction. 

 

I. INTRODUCTION 
Both radar model validation and target recognition 

applications require accurate, and preferably fast, 

signature prediction methods, as illustrated in Fig. 1. 

Prediction methods are nonparametric (e.g., numerical 

electromagnetic prediction codes) and parametric (e.g., 

attributed scattering centers). Choice of method should 

be based on the trade space between model accuracy  

and computational efficiency. Computational efficiency 

includes not only the ability to quickly compute the 

prediction model (the forward problem) but also the 

complexity and feasibility to extract signatures from 

measured data (the inverse problem). Numerical 

electromagnetic (EM) prediction methods are geared 

toward the forward problem, while parametric models 

(PMs) have been developed with the inverse problem in 

mind. The complexity-accuracy trade space for each 

model type is qualitatively depicted in Fig. 2. 

 

II. SIGNATURE PREDICTION 
EM numerical prediction techniques include method 

of moments (MoM), differential techniques, integral 

equation solvers, shooting and bouncing rays (SBR) 

geometric/physical optics (GO/PO), and many other 

methods, discussed in [1-5]. Computation time varies 

with the electrical size of the target and is extended by 

the time it takes to draw/import and facetize/mesh a 

target model. A method to speed up the EM part of SBR 

is given in [6], and [7] provides a technique to extend 

single frequency computations over a band of frequencies. 

An attempt to speed the drawing portion is provided  

in [2], which converts a picture into a facet model. 

Alternatively, [2] lets users build simple targets by 

combining primitive shapes, which can be characterized 

by PMs. 

 
 

Fig. 1. Process flow diagram for signature prediction 

(forward problem) and signature extraction (inverse 

problem). 
 

 

 
 

Fig. 2. Scattering models and notional complexity vs. 

accuracy trade space. 
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PMs developed for signal processing tasks may also 

be used for signature prediction. The isotropic point 

model is characterized by scatterer position and radar 

cross section (RCS). The isotropic point model is a key 

assumption in radar imaging; however, realistic scatterer 

persistence is typically less than 20° [8]. The monostatic 

2D attributed scattering center (ASC) model [9] is 

parameterized by frequency, polarization, aspect (along 

the length of the target), and length. Other monostatic 

models include the Huynen and Cameron decompositions 

that break monostatic polarization responses into 

primary forms [10-12]. Bistatic canonical shape models 

parameterized by type, size, and orientation capture 3D 

physical geometry and model frequency, polarization, 

and azimuth and elevation aspect dependence [13]. The 

canonical models are built from products of planar 

solutions for strip, dihedral, and circular scattering 

mechanisms [14], [15] to approximate the 3D solution. 

A full analytic 3D GO/PO solution for bistatic scattering 

from a dihedral is given in [16]. EM predictions, PMs, 

and measurements of a dihedral are compared in [17]; 

PMs took milliseconds to compute, while MoM took 

hours. 

PMs are extremely fast because the equations are 

written analytically and do not need a numerical solver 

like EM methods. However, accuracy is limited by 

underlying GO/PO and planar assumptions; edge 

diffraction, traveling waves, etc. are not included. Also, 

the dihedral and trihedral models are defined only within 

the interior of the corner, though plate models could be 

combined to model the back sides. Furthermore, PMs  

do not capture interactions between scatterers. Thus, a 

major challenge for using PMs for prediction is how  

to break a complex target into scattering primitives.  

For example, constructing a vehicle's sides with plates 

neglects vehicle/ground interaction, which is better 

modeled with dihedrals.   

 

III. SIGNATURE EXTRACTION 
Numerical EM techniques are not suited to signature 

extraction since each iteration in an optimization would 

require update to the facet model and re-run of 

computationally expensive prediction code. However, as 

shown in Fig. 1, other feature extraction methods can be 

used along with model refinement and EM predictions 

for RCS signature validation.   

Parametric methods were developed with signal 

estimation techniques and target recognition applications 

in mind. Parameters may be estimated from measured 

data, though estimation complexity increases with model 

complexity. Isotropic points may be estimated using the 

CLEAN algorithm [18], [19]. Two-dimensional ASCs 

may be estimated using Prony's method or matrix pencil 

method [9]. Canonical shape primitives are more difficult 

to extract since shape selection and parameter estimation 

are coupled; however, an initial iterative approach is 

given in [20]. Other approaches to parametric model 

extraction include Expectation-Maximization [21], sparse 

dictionary techniques [22-24], and ray-tracing methods 

[19], [25]. Limited data from practical radar flight paths 

complicates the classification and estimation problem, as 

illustrated in [26], since objects may look similar for a 

narrow-angle data slice. 

 

IV. CONCLUSION 
We have provided an overview of numerical EM 

prediction versus PMs. While PMs are limited to simple 

scattering mechanisms, they are fast and well-suited to 

signature extraction. Numerical EM codes enable high 

fidelity prediction of complex targets; however, it is  

not computationally feasible to use EM methods for 

signature extraction. Thus, one should choose a signature 

prediction method depending on the application. 
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