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Abstract ─ This study presents experimental verification 

of a nonlinear position-flux control for active magnetic 

bearing (AMB) system operated with zero-bias flux. 

Recently developed controllers for nonlinear flux-

controlled AMB applications are complicated and 

inherently difficult to implement. Therefore, three designs 

of low-order controllers are proposed using nonlinear 

feedback tools including Lyapunov-based techniques 

and control Lyapunov functions (CLFs). The control 

objective is to globally stabilize the rotor mass position 

in the AMB system. Responses of the AMB system states 

to initial condition and to external load disturbance are 

presented and the simulation and experimental results  

for transient responses are compared. The overshoots are 

compensated for the zero neighbourhood, and the rotor 

position amplitude does not exceed 2.5% of the air gap. 

 

Index Terms ─ Active magnetic bearing, control 

Lyapunov function, nonlinear flux controller, zero-bias 

control. 
 

I. INTRODUCTION 
The bias-current or bias-flux are frequently used to 

linearize active magnetic bearing (AMB) dynamics,  

i.e., see author references [1, 2, 3]. However, large bias-

current or bias-flux implies power losses, more heat 

dissipation and high bearing stiffness. In order to improve 

the energy efficiency of the AMB system, low- or zero-

bias flux control can be applied [4, 5, 6, 7, 8]. The low- 

or zero-bias flux-controlled AMB dynamics become 

strongly nonlinear. Therefore, nonlinear control methods 

based on position-current or position-flux state feedbacks 

can be applied [9, 10, 11, 12]. In particular, in [10] the 

uncertain nonlinear flux-controlled AMB system operated 

with zero-bias is stabilized and so-called small gain 

theorem is used to calculate the robust stability.  

The Lyapunov-based technique, such as control 

Lyapunov function (CLF) was introduced by Artstein 

and Sontag in 1983 [13, 14]. The idea of CLF-based 

control is to select a Lyapunov function V(x) and then  

to try to find a feedback control u(x) that renders 

d𝑉(𝑥, 𝑢)/dt , defined negatively. Therefore, for suitable 

V(x), we can find a stabilizing control law u(x) for the 

system feedback [15]. The CLF-based control concept 

was extended to dynamic systems with known disturbance 

[16, 17, 18], where V(x) is the RCLF (a robust CLF), if, 

for a bounded disturbance,  ensures that �̇�(𝑥, 𝑢,) < 0 

[19, 20].  

Recently the Lyapunov functions are used in the 

control application to the AMBs and electric machines. 

The nonlinear Lyapunov-based observer for the induction 

motor dynamics with saturation of the iron core is 

presented [21]. The observer is used to estimate the  

rotor flux amplitude and phase under varying conditions. 

The simulation and experimental results show good 

convergence of the observer comparing with the full-

order Luenberger observer. Similarly, in [22] the authors 

designed a Lyapunov-based fuzzy adaptive controller  

in order to estimate the dynamic system uncertainties. 

The adaptive sliding-mode controller is designed for  

the position of rotor axial direction based on Lyapunov 

function and radial basis function is given in [23]. 

Simulations and experimental validation show a 

promising position tracking of the AMB rotor based on 

the designed control algorithm under different operating 

conditions, such as rotor position and force disturbance. 

The Lyapunov-based model predictive (MPC) scheme 

for permanent-magnet synchronous machine (PMSM) 

drive systems is presented in [24]. This system is shown 

to be asymptotically stable using the convex control set 

(CCS) input constraint with space vector or pulse width 

modulation and asymptotically set stable using the finite 

control set (FCS) input constraint.  

The purpose of this paper is to provide the 

experimental verification of the CLF-based control 

designs. The experimental results proof that proposed 

controllers improve the zero-bias flux-controlled AMB 

performance and are comparable with more complicated 

approaches, i.e., based on Artstein-Sontag’s theorem [4] 

or passivity-based ideas [5]. In comparison with previous 

solutions [4, 5], the obtained control laws ensure similar 

or even better transient responses and better external 

disturbance attenuation. 

The paper is organized as follows. Section 2 presents  
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a nonlinear one-dimensional AMB model. Section 3 

formulates conditions for Lyapunov-based AMB control 

and proposes CLF-controllers. Section 4 provides 

simulation of the zero-flux AMB system with CLF states 

feedbacks. The description of the experimental test rig 

and experimental results are given in Section 5. Section 

6 states the concluding remarks. 

 

II. ZERO-BIAS AMB SYSTEM 
Consider a simplified 1–DOF (one-degree-of-freedom) 

AMB model, that consists of two opposite and presumably 

identical electromagnets with resistance R1, R2 [] and 

currents i1, i2 [A], respectively (see Fig. 1). These 

electromagnets generate fluxes 
1
, 

2
 [Wb] and further 

the attractive forces F1, F2 [N], acting on the rotor with 

mass m [kg]. In order to control the position x [m] of  

the rotor to the stable state 𝑥 = 0, the voltage inputs of 

the electromagnets, 𝑣1 and 𝑣2 [V], are used. The cross 

sectional area of the air-gap is denoted by A [m2] and N 

is the number of turns of the coil of each electromagnet, 

respectively. 
 

 
 
Fig. 1. Simplified one-dimensional AMB. 

 

In order to represent the dynamics of the AMB 

system operated with zero-bias we follow the approach 

given in [4, 5]. Let us introduce the following non-

dimensionalized state and control variables along with a 

non-dimensionalized time: 

 

𝑥1: =
𝑥

𝑔0
, 𝑥2: =  

�̇�

sat√𝑔0 𝜇0𝑚𝐴⁄
, 𝑥3: =

𝜙

sat

𝑢:=  
𝑣√𝑔0𝜇0𝑚𝐴

𝑁 sat
2 , 𝜏: = 𝑡

 sat

√𝑔0𝜇0𝑚𝐴
,

 (1) 

where g0 [m] is the nominal air-gap, �̇� [m/s] is the velocity 

of the rotor mass,  ∶= 
1
− 

2
 [Wb] is the generalized 

electromagnetic flux, sat [Wb] is the saturation flux, u 

is the non-dimensionalized control variable, 𝑣 = 𝑣1 − 𝑣2 

[V] is the generalized control voltage, 𝜇0 is the 

permeability of free space (=1.25  10-6 H/m), 𝜏 denotes 

a non-dimensionalized time, t [s] is the original time. 

In zero-bias flux control, the generalized control 

voltage 𝑣 changes under the following flux-dependent 

condition: 

 
𝑣1 = 𝑣,      𝑣2 = 0   when    0,
  𝑣2 = −𝑣,   𝑣1 = 0   when   < 0.

 (2) 

The switching scheme allows us to minimize the control 

power since at least one of the control voltages 𝑣1 or 𝑣2 

and as well as fluxes 
1
 or 

2
is zero at the time. The 

dynamics of the 1DOF AMB model with zero-bias flux 

may be presented in terms of (1) as: 

   

{
 
 

 
 

𝑑

𝑑𝜏
𝑥1 = 𝑥2,

𝑑

𝑑𝜏
𝑥2 = 𝑥3|𝑥3|

𝑑

𝑑𝜏
𝑥3 = 𝑢.

. (3) 

Equation (3) shows that the AMB system has strongly 

nonlinear dynamics provided by the singularity. 
 

III. LYAPUNOV-BASED AMB CONTROL 
In this section we will find the CLF that will make 

the AMB system globally stable. Consider the continuous-

time system: 

 �̇� = 𝑓(𝑥) + 𝑔(𝑥)𝑢, (4) 

where 𝑢 ∈ ℝ – control input, and vector f: ℝ3ℝ3  

and g: ℝ3ℝ3, are given by 𝑓(𝑥) = [𝑥2 𝑥3
[2] 0]

𝑇
, 

𝑔(𝑥) = [0 0 1]𝑇 ,  with 𝑥3
[2]
≔ 𝑥3

2sgn(𝑥3) = 𝑥3|𝑥3|.  
Recall that system (4) is asymptotically stabilizable with 

respect to the equilibrium pair (𝑥0, 𝑢0), where 𝑥0 =
𝑥(0), if there exists a feedback law 𝑢 = 𝛼(𝑥), 𝛼(𝑥0) =
𝑢0, defined on a neighbourhood 𝑈𝑥0  of 𝑥0 such that 𝛼  

is continuously differentiable on 𝑈𝑥0 ∖ {𝑥0}, for which 

the closed-loop system �̇�(𝑡) = (𝑓 + 𝛼𝑔)(𝑥(𝑡)) is locally 

asymptotically stable (with respect to 𝑥0). Recall also 

that (see [14, 25]) a real continuous function defined on 

open set 𝑋 ⊂ 𝑅𝑛 is a local control Lyapunov function  

for closed-loop system if it satisfies the following 

properties: 

(i) V is proper at 𝑥0, i.e., {𝑥 ∈ 𝑋: 𝑉(𝑥) ≤ 𝜀} is a 

compact subset of some neighborhood 𝑈𝑥0  of 

𝑥0 for each sufficiently small 𝜀 > 0. 

(ii) V is positive defined on 𝑈𝑥0: 𝑉(𝑥0) = 0 and 

𝑉(𝑥) > 0 for each 𝑥 ∈ 𝑈𝑥0 , 𝑥 ≠ 𝑥0. 

(iii) 𝐿𝑓𝑉(𝑥) < 0 for each 𝑥 ≠ 𝑥0, 𝑥 ∈ 𝑈𝑥0 , such 

that 𝐿𝑔𝑉(𝑥) = 0, where 𝐿𝑔𝑉(𝑥) ≔ 𝛻𝑉(𝑥) ⋅

𝑔(𝑥) denotes the Lie derivative of 𝑉 with 

respect to 𝑔, and 𝐿𝑓𝑉(𝑥) is the Lie derivative 

of 𝑉 with respect to 𝑓. 

The pair (𝑓, 𝑔) of vector fields 𝑓 and 𝑔 that satisfies 

conditions (i)-(iii) is called a control Lyapunov pair. If 

the origin of (4) has CLF, then there exists a control  

law that renders the system asymptotically stable. We 

assume that for all x ≠ 0 there is a positive, proper 

function 𝑉 ∈ ℝ+ such that: 

   ∇𝑉(𝑥)[𝑓(𝑥) + 𝑔(𝑥)𝑢] < 0. (5) 

Let us assume that CLF describes the kinetic energy 

of system (3) is 𝑉 =  
1

2
(3𝑥1

2 + 2𝑥2
2 + 𝑥3

2). Then the  
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control laws, which fulfil inequality (5), are as follows: 

 

𝑢1 = −3𝑥1
2𝑥3 − 2𝑥2|𝑥3| − 3𝑥1𝑥2𝑥3 − 𝑥3 + 𝑢0,

𝑢2 = 
1

2
(3𝑥1

2 + 2𝑥2𝑥3|𝑥3| + 3𝑥1𝑥2 − 𝑥3) + 𝑢0,

𝑢3 = −𝑥2|𝑥3| − 𝑥3 − 𝑥1𝑥2𝑥3 + 𝑢0,

 (6) 

where 𝑢0 = −𝑘1𝑥1 − 𝑘2𝑥2 with 𝑘1=0.92 𝑘2=9.94 were 

optimized and evaluated earlier in [12]. These gains  

are kept constant for all simulations and experiments. 

Regarding Eq. (6), it should be noted that theoretically 

there are an infinite number of functions. Each of  

them must to fulfill inequality (5). In our work, we have 

examined three functions 𝑢1, 𝑢2 and 𝑢3 that were 

optimized due the kinetic energy of the system. Detailed 

information for evaluation of the controller 𝑢1 can be 

found in [7], 𝑢2 in [6], and 𝑢3 in [8], respectively. 
 

IV. SIMULATION RESULTS 
This section presents simulation results obtained for 

zero-bias AMB system (3), described in Section 2, after 

applying zero-bias flux control with switching scheme 

(2). The results are presented for three state-feedback 

controllers 𝑢1, 𝑢2, 𝑢3 (6) and for AMB true states: 𝑥 [m] 

position, �̇� [m/s] velocity and  [Wb] flux. The AMB 

specifications are collected in Table 1. All simulations 

were carried out with sample time of 0.0001 s.  

 

Table 1: AMB specifications 

Symbol Value Meaning 

|𝑥|𝑚𝑎𝑥 [m] 0.0002 Rotor position limit 

g0 [m] 0.0004 Nominal width of air-gap 

m [kg] 2.5 
Rotor mass in the bearing 

plane 

N 60 Number of coil turns 

R [] 0.26 Coil resistance 

A [m2] 0.00036 Electromagnet pole area 

sat [Wb] 0.0022 Saturation flux 

isat [A] 10 Saturation current 

 

The AMB model detailed in Section 2, with 

parameters given in Table 1 was applied in Matlab/ 

Simulink software, and the control structure is presented 

in Fig. 2. 

The AMB system trajectories and controller outputs 

are illustrated for the given sinusoidal disturbances d1 

and d2 with amplitude of ±1 V and frequency of 10 and 

20 Hz respectively, which are constant for all simulations. 

The disturbance is the external load/force acting on the 

rotor supported by AMB. This force is used to test the 

rotor stability. For simplicity we represent the disturbance 

as voltage. The power amplifier converts this voltage 

into the disturbance current with amplitude ±1 A, resulting 

in the disturbance force generated by the electromagnets. 

The disturbances 𝑑1 and 𝑑2 are given in Fig. 3. 

 

 
 

Fig. 2. Simulink control structure. 

 

 
 

Fig. 3. Sinusoidal disturbances 𝑑1 and 𝑑2 of control 

voltage. 

 

The AMB state responses to disturbance 𝑑1, in zero-

bias mode with controllers (6) are presented in Fig. 4, 

respectively. The disturbance 𝑑1 is successfully attenuated 

by the controller in all cases. The lowest amplitude of the 

rotor positon response is given for controller 𝑢1, but the 

flux amplitude is also the highest.  
 

 
 
Fig. 4. Responses of closed-loop system with zero-bias 

to disturbance 𝑑1 employing control laws: 𝑢1, 𝑢2 and 𝑢3. 
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Figure 5 presents the control voltages responses to 

disturbance 𝑑1 for controllers (6). One can be observed, 

that the voltage amplitude does not exceed 2 V (peak-

to-peak). Maximum absolute voltage is about 1.9 V  

for control law 𝑢2 and minimum equals 0.8 V for 𝑢3. 

Although the controller output 𝑢2 has the biggest amplitude 

(peak-to-peak), the system's response is worse, compared 

to the controls 𝑢1 and 𝑢3 (see Fig. 4). 

 

 
 

Fig. 5. Comparison of controller outputs responses to 

disturbance 𝑑1 for controllers 𝑢1, 𝑢2, 𝑢3. 

 

Comparing control voltages responses given in  

Fig. 5 with results shown in Fig. 4, we can observe that 

the shapes of the voltage curves coincide with the rotor 

displacement values. Similarly with the rotor velocity 

and flux, which correspond to the displacement values 

obtained from simulation tests. The smoothest responses 

were obtained at the lowest values of the control signal. 

However, the control error was not reduced to zero, 

while in the case of 𝑢1 and 𝑢2 control, after reaching the 

extreme position – minimum or maximum, the error was 

compensated to zero, then again reaching the extreme 

position and finally stabilize near to zero. According to 

the assumption, using more electric energy (greater 

control voltage value) to stabilize the position takes place 

faster than in the opposite case. 

 

V. EXPERIMENTAL VALIDATION 
In this section the performance of the CLF-based 

AMB state-feedbacks, which simulation results are 

presented in Section 4, are verified via experimental 

measurements. The experimental research was carried 

out using a laboratory stand located in the Bialystok 

University of Technology where it was designed and 

fabricated [26]. 

The AMB system consists of two radial heteropolar 

active magnetic bearings which support the shaft. The 

shaft is connected with AC spindle motor by flexible 

coupling. The total mass of shaft equals 6 kg, and spindle 

AC motor with inverter enables to the system operated 

with speed range of 024 000 r/min. The radial AMBs 

are enclosed by a housing which consists of the stator, 

two-axes eddy-current displacement sensors, and auxiliary 

ball bearings. Main components of the experimental test  

rig are given in Fig. 6. 
 

 
 

Fig. 6. Experimental setup: PWM power amplifiers, AMB 

rotor, radial AMB with sensors. 

 

The control laws (6) are implemented in the real-time 

Digital Signal Processor (DSP) of dSpace. The control 

algorithms are implemented as the discrete-time models 

using the Real-Time Interface (RTI) and the Real-Time 

Workshop (RTW) provided by Matlab/Simulink 

environment. The signal acquisition is realized using 

ControlDesk environment of dSPACE. The DSP box 

consists also 14 bits analog-to-digital (A/D) and digital-

to-analog (D/A) converts. The control voltage is the 

command input signal to the pulse width modulation 

(PWM) amplifiers. The switching frequency of the PWM 

amplifiers equals 18 kHz and the PWM voltage is equal 

to 180 V. The PWM amplifiers have inherent current 

control loops which ensure that the coil current 𝑖 is 

proportional to the DSP output voltage command, with 

the gain 1 A/V. The output control currents which drive 

the AMB coils are limited to 10 A (peak-to-peak) with 

frequency bandwidth up to 1 kHz. The AMB current noise 

does not exceed the 0.1 A (peak-to-peak). The radial 

rotor displacement is measured using contact-less eddy-

current sensor with accuracy up to 1 m. The position 

sensor output is connected to the proximitor converter to 

ensure stable voltage output which is proportional to the 

rotor displacement with the gain 7.87 V/mm 5%. The 

displacement sensor output is filtered using anti-aliasing 

filters in order to cut-off any noise in the channel above 

Nyquist frequency (above 2 kHz). In order to obtain rotor 

velocity, the displacement derivative was used. Noisy 

signal was smoothed with 1st degree Bessel filter. Flux 

measurement is provided by ultra-thin (130 m) Kapton-

foil flexible Hall sensors. Two Hall sensors are mounted 

on opposite poles in the x axis of the AMB. Fabricated 

conditioning system was used to amplify the Hall voltage 

outputs. The AMB configuration during measurements 

and signal connections are shown in Fig. 7. 
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Fig. 7. Measurement configuration. 

 

The experimental tests were divided into two groups: 

AMB states response to the sinusoidal disturbance 𝑑1/𝑑2 

(presented in Figs. 811) and AMB trajectories response 

to displacement initial condition 𝑥 = 0.0002 m (given in 

Figs. 12 and 13). The first set of the results are given for 

control 𝑢1. The initial condition response of the AMB 

system with disturbance 𝑑1 and 𝑑2 is given in Fig. 8. In 

particular, in Fig. 8 the experimental results are plotted 

together with simulation responses. According to results 

given in Fig. 8, it is demonstrated that, the disturbance 

effect of two different frequencies is compensated with 

controller voltage output amplitudes. 
 

 
 

Fig. 8. Comparison of the simulation and experimental 

transient responses of AMB states with the controller 𝑢1 

and disturbances: (a) 𝑑1; (b) 𝑑2. 
 

Figure 9 shows the AMB states responses to 

disturbance 𝑑1 with control 𝑢2, and Fig. 10 presents the 

AMB trajectories for controller 𝑢3. 

 
 

Fig. 9. Experimental and simulation responses of the 

AMB states to disturbance 𝑑1 with controller 𝑢2.  
 

 
 

Fig. 10. Experimental and simulation responses of the 

AMB states to disturbance 𝑑1 with controller 𝑢3. 
 

The voltage outputs 𝑣1, 𝑣2 for controllers 𝑢1, 𝑢2, 𝑢3 

are presented in Fig. 11 in case of both disturbances 

𝑑1/𝑑2. 
 

 

 
 

 

 
 
 

(a) 
 

 

 
 

 

 
 

(b) 

 

 

 

Fig. 11. Control voltages responses to disturbances: (a) 

𝑑1 for controllers 𝑢1, 𝑢2, 𝑢3 ; (b) 𝑑2 for controller 𝑢1. 
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To summarize, the results presented in Figs. 810 

indicate that the overshot is compensated to zero 

neighbourhood, and the max rotor position amplitude 

does not exceed 10 m that is 2.5% of the air-gap, despite 

the desired initial conditions and different disturbances. 

Moreover, the experimental results of the rotor position 

responses fit to the simulation one. In the case of 𝑢3 

control (Fig. 10), the error is not reduced to zero, but the 

disturbance is less compensated. In Fig. 11, we can 

observe the results of the voltage 𝑣1 and 𝑣2 switching 

operation under the flux-dependent condition (2), where 

at any given time only one electromagnet is activated. 

The control voltage amplitude does not exceed 2 V, for 

controller 𝑢1, 𝑢2, and 𝑢3. The AMB system response to 

the initial condition, where the rotor is stabilized from 

the auxiliary bearing (when 𝑥 = 0.0002) to the origin at 

𝑥 = 0, is given in Figs. 12 and 13. In particular, Figs. 12 

(a) and 12 (b) give the generalized flux  responses and 

voltage outputs 𝑣1 𝑣2 responses for controllers 𝑢1, 𝑢2 

and 𝑢3. 

 

 
  (a) Electromagnetic flux 
 

 
 (c) Cost function 

 
 (b) Voltage outputs 

 
Fig. 12. AMB system responses to the initial condition 

for controllers 𝑢1, 𝑢2, 𝑢3, without disturbance. 

 

In order to assess the energy requirements for 

controllers 𝑢1, 𝑢2 and 𝑢3, the quadratic cost function of 

the controller output 𝐽1 = ∫ 𝑢2
∞

0
d𝑡 is used. The cost 

function for all controllers is compared and results are 

shown in Figure 12c. One may observe that the highest 

total energy is required by the controller 𝑢2. Figure 13 

presents comparison of AMB rotor position responses to 

the initial condition for three controllers: 𝑢1, 𝑢2 and 𝑢3. 

Stabilization time is less than about 0.1 s for each 

controller. However the shortest setting time of 0.05 s is 

achieved with control 𝑢2, while the setting time of 0.1 s 

is achieved for controllers 𝑢1 and 𝑢3 with less energy 

requirements. The energy demand is the lowest in the 

case of controller 𝑢1, see Figs. 12 (b) and 12 (c), but the 

rotor position stabilizes slower (about 0.1 s), see Fig. 13. 

 
 

Fig. 13. Comparison of AMB system responses to the 

initial condition without disturbance. 
 

To conclude the experimental results, we can notice 

that the zero-bias control design for the AMB is 

challenging cause of the loss of linear controllability near 

the origin, when 𝑥 = 0. Thus, in order to produce a low 

control electromagnetic force we need a large voltage 

commands 𝑣1 and 𝑣2, see i.e., output voltages for 

controller 𝑢2 in Fig. 12. Moreover, we need to notice, 

that in the experimental measurements, we can observe 

the influence of the other disturbances which are not 

addressed (see zoo window in Fig. 13). These disturbances 

can be divided into external part, i.e., noise in the control 

voltage and in the measured rotor position or flux, and 

into internal, such as: self-excited vibrations. The total 

noise of the measured rotor position is about 1.2 m 

(peak-to-peak), that is 0.3% of the air-gap According to 

the high sensitivity of the AMB rotor dynamics, these 

disturbances provide to system perturbations and more 

power consumption. 
 

VI. CONCLUSION 
In this paper we have presented three control 

Lyapunov function (CLF) designs for the flux-controlled 

AMB system operated with zero-bias. The proposed 

designs are experimentally validated. The results showed 

global asymptotic stability of the nonlinear AMB system 

with the singularity near the origin. The AMB states 

transient responses to initial condition and to the external 

load disturbance are presented and compared. The Matlab/ 

Simulink simulation results fit with experimental 

measurements. Moreover, the low-order CLF-based state 

controllers gave equivalent results compared with the high-

order complex control, i.e., based on Artstein-Sontag’s 

theorem [4]. One of the future goals is to address 

Lyapunov-based nonlinear feedback controllers for  

the MIMO system. In the case of 5–DOF AMB flux-

controlled rotor dynamics, the decoupling control can be 

applied. 
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