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Abstract ─ The semi-analytical calculation of magnetic 

forces is currently an interesting alternative to the time-

consuming three-dimensional finite-element modeling 

(3D-FEM) due to its high accuracy and low computational 

cost. This paper presents novel equations for determining 

the magnetic forces of a cylindrical permanent magnet 

actuator used in high precision magnetic levitation 

positioning systems. Compared to the already available 

equations in literature, these equations consider the 

magnetic forces as a function of the current magnet 

position. Moreover, these equations are also suitable for 

designing and analyzing the cylindrical permanent magnet 

actuator. The results of our force equations and the 

verification by 3D-FEM and measurements are presented 

in this paper. 

 

Index Terms ─ Cylindrical permanent magnet actuator, 

electromagnetic analysis, Lorentz force, magnetic 

levitation. 
 

I. INTRODUCTION 
Magnetic levitation is a key technology used in 

order to achieve vacuum compatible high precision 

positioning systems since friction, backlash, and wear 

are eliminated. Positioning systems based on magnetic 

levitation are characterized by a simple compact structure 

with highest positioning accuracy, excellent repeatability 

and high control bandwidth. Thus, six degrees-of-freedom 

(6-DoF) magnetic levitation positioning systems are 

currently investigated and developed for applications  

in the semiconductor industry, nanotechnology or 

microscopy, where highest dynamics, highest precision 

and absolutely friction-free operation are desired [1-5]. 

Due to the non-linear current-force and position-

force relation in reluctance actuators, which complicates 

controller design, most existing solutions of magnetic 

levitation positioning systems are based on ironless 

actuators which use Lorentz forces to levitate and drive 

the moving element (mover).  

The main advantages of ironless actuators based on 

Lorentz forces are its inherent linear relation between the 

currents and forces and its high positioning accuracy [6-

7]. 

Designing, analyzing and optimizing such ironless 

high precision positioning systems require electromagnetic 

models that are very fast and accurate. Three-dimensional 

finite element modeling (3D-FEM) is often used for the 

calculation of magnetic fields and forces of such systems 

because they provide a very accurate solution. However, 

3D-FEM is not suitable for designing and optimizing 

such systems because of its extremely high computation 

time. Thus, other calculation approaches are needed. A 

very fast and accurate alternative to the conventional 3D-

FEM modeling is a semi-analytical-based modeling 

approach. The semi-analytical approach describes the 

magnetic fields and forces as a function of physical 

parameters, e.g., magnet and coil dimensions and thus, 

provides a good insight in the physical system properties. 

Moreover, for the design and optimization of 

electromagnetic actuators, such equations are more 

efficient compared to 3D-FEM. Beyond that, researchers 

do not always have the possibility to use a cost-intensive 

3D-FEM software, therefore, a precise semi-analytical 

equation is a good alternative since it can be implemented 

in every mathematical program.  

Due to these reasons, many researchers calculate the 

magnetic fields and forces in electromagnetic systems 

semi-analytically instead of using 3D-FEM. This can be 

seen by the huge number of publications dealing with 

semi-analytical calculation of magnetic fields and forces 

[8-14]. For instance, in a recent publication, [15] derives 

analytical expressions in order to optimize a magnetically 

levitated planar motor. The analytical calculation of 

repulsive levitation forces between Halbach arrays and  
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magnetic guiding coils in high precision magnetic 

levitation systems is presented in [16]. An overview of 

different analytical calculation methods is given in [17]. 

In high precision magnetic levitation systems, 

ironless rectangular coils [18], square coils [19] or circular 

coils [20] are commonly used in order to generate 

repulsive levitation forces. Until now, many papers 

published in literature deal with the semi-analytical force 

calculation between a cuboidal permanent magnet and a 

rectangular [21] or square air-core coil [22]. The derived 

force equations for the rectangular and square coils 

consider also the position dependence of the magnetic 

forces and thus provide the basis for fast and accurate 

analysis and design tools [21-22]. Moreover, these 

equations can also be used for the derivation of model-

based commutation algorithms as well as real-time motion 

control of magnetic levitation positioning systems [23-

25]. 

The semi-analytical force calculation between 

circular air-core coils and cylindrical permanent magnets 

are also known, but these equations are only valid in 

cases where the center axis of cylindrical magnet and  

the circular coil are coaxial [26-29]. However, in 6-DoF 

magnetic levitation system, a movement of the permanent 

magnet in the horizontal plane is indispensable, i.e., the 

center of the cylindrical magnet and the circular coil  

are not coaxial and thus the force equations known in 

literature are not valid for the non-coaxial case. Since 

this case has not yet been investigated in the context of 

high precision magnetic levitation systems, it is rare to 

find equations which consider the Cartesian magnetic 

force components (𝐹𝑥, 𝐹𝑦 , 𝐹𝑧) as a function of the current 

mover position (𝑥𝑝, 𝑦𝑝). Previous efforts to determine the 

magnetic forces between a circular coil and a cylindrical 

permanent magnet are mostly done by experiments [30] 

or by 3D-FEM [31].  

As such, this paper aims to provide a semi-analytical 

calculation of the repulsive magnetic levitation force 

between a cylindrical moving magnet and a stationary 

circular coil.  

Moreover, the calculation of the destabilizing 

propulsion forces is also presented. The main contributions 

of this paper are new semi-analytical expressions which 

consider the Cartesian magnetic force components as a 

function of the current mover position. 

This paper is organized as follows: Section II explains 

briefly the force generation principle of the cylindrical 

magnet actuator. The generation and calculation of the 

levitation and propulsion force as a function of the mover 

position is described in Section III. In Section IV, the 

calculated levitation and propulsion forces using the new 

expressions are compared with the calculated forces 

using 3D-FEM and with our measured forces obtained 

from the prototype. Section V concludes this paper. 

 

II. ANALYSIS AND MAGNETIC FIELD 

CALCULATION 
In high precision magnetic levitation systems, the 

active magnetic guidance coil has a significant weight 

that must be levitated, e.g. the weight of the magnet, the 

plate to which it is fixed and the weight of an additional 

payload. Hence, the calculation of the levitation forces is 

an important task in such positioning systems. Compared 

with cost-intensive experiments and time-consuming 

3D-FEM software, the proposed approach in this paper 

ensures the possibility of calculating quickly the levitation 

force as a function of the coil and magnet dimensions and 

thus is suitable for parameter studies.  
 

A. Force generation principle 

The permanent magnet actuator usually used in 

magnetic levitation systems in order to generate the 

repulsive levitation force can be seen in Fig. 1. It consists 

of a fixed circular air-core coil and a moving cylindrical 

permanent magnet.  
 

mover

air-core 

coil

permanent 

magnet

 
 

Fig. 1. Cylindrical permanent magnet actuator. 

 

However, such topologies based on static magnetic 

forces are inherently unstable. This means that the 

permanent magnet actuator generates, in addition to the 

desired stable repulsive levitation force, an undesired 

destabilizing propulsion force that tends to push the 

permanent magnet laterally away from the equilibrium 

position. Figure 2 shows a more detailed illustration of 

this unstable behavior. 
 

 
 

Fig. 2. Generated force components by the permanent 

magnet actuator. 
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As can be seen from this figure, the magnetic field 

generated by the cylindrical permanent magnet creates 

flux density components in the 𝑟- and 𝑧-directions. The 

interaction of the 𝑟-component of the magnetic flux 

density with the 𝜑-component of the current density in 

the circular coil generates a levitation force in the z-

direction.  

An equilibrium position occurs, when the repulsive 

levitation force in +𝑧-direction exactly compensates the 

gravitational force of the mover in the −𝑧-direction. As a 

result, this equilibrium position is stable, i.e., the motion 

of the mover along the 𝑧-direction is stable. This is 

because as the air gap increases, the generated repulsive 

levitation force decreases. Thus, the gravitational force 

restore the mover in the equilibrium position. Nevertheless, 

the 𝑧-component of the magnetic flux density generates 

with the same current density in the coil a destabilizing 

propulsion force in the r-direction. This instability is 

consistent with Earnshaw’s theorem predicted by S. 

Earnshaw in the early 1800 and Braunbek’s theorem, 

which states that a stable levitation based only on static 

magnetic forces between coils and permanent magnets is 

never stable in all directions simultaneously [32,34]. 

Thus, this destabilizing force must be compensated by 

additional propulsion actuators in order to restore the 

lateral stability and to move and position the mover 

simultaneously as it is proposed among others in [1], 

[19],[20],[22],[29],[30],[31].  

Consequently, a stable levitation can only be achieved 

with additional propulsion actuators in combination with 

a control system. 

The total force which acts on the fixed circular  

air-core coil can be calculated using the Lorentz force 

formula: 

 
𝐅 = ∫ 𝐉 × 𝐁 𝑑𝑉

𝑉

, (1) 

which states that the Lorentz force is the volumetric 

integral of the cross product of the current density 𝐉  
in the coil with the external magnetic flux density 𝐁 

generated by the permanent magnet over the whole 

volume 𝑑𝑉 = 𝑑𝑥𝑑𝑦𝑑𝑧 of the coil. However, since the 

Lorentz force formula can only applied to the current 

carrying coil, the permanent magnet will experience 

according to Newton’s third law the same force in 

opposite direction (action = reaction). 

 

B. Calculation of the magnetic flux density  

The first important step for the prediction of the 

Lorentz force according to (1) is the calculation of the 

magnetic flux density of the permanent magnet inside the 

coil volume. In literature, many 3D-field equations are  

presented for different permanent magnet shapes. These 

equations are based on either the current sheet model  

or on the surface charge model [33]. Both approaches 

can be derived from the Maxwell equations under  

the assumption that the relative permeability μr = 1. 

Moreover, both allow an extremely accurate and fast 

field calculation, provide a good insight into the system 

properties and leads to the same results in free space 

[28].  

In this paper, the magnetic flux density for an  

axial magnetized permanent magnet with a uniform 

magnetization is determined using the surface charge 

model and this is given by [22]: 

 
𝐁 =

𝜇0

4𝜋
 𝛁𝐫 ∮

𝐌(𝐫′) ∙ 𝐧

|𝐫 − 𝐫′|
𝑆

𝑑𝑆, (2) 

where 𝐌(𝐫′) is the magnetization of the permanent 

magnet, 𝐧 is the normal vector on the surface, μ0 is the 

vacuum permeability, 𝑆 is the surface of the permanent 

magnet, 𝛁𝐫 is the vector operator, 𝐫 describes the position 

where the field is evaluated and 𝐫′ describes the position 

of the permanent magnet. 
 

III. FORCE CALCULATION 
Using (2) and inserting into (1), the total force can 

be generally written as: 
 

 

  𝐅 = ∫ 𝐉 × (
𝜇0

4𝜋
 𝛁𝐫 ∮

𝐌(𝐫′) ∙ 𝐧

|𝐫 − 𝐫′|
𝑆

𝑑𝑆)  𝑑𝑉

𝑉

. (3) 

 

This quintuple integral expression can be generally 

used in order to calculate the total force generated 

between a permanent magnet and an air-core coil.  

For the circular air-core coil, the current density in a 

cylindrical coordinate system only has a component  

in the tangential direction. Hence, in order to obtain a 

formula for the levitation force, only the flux density 

component in the radial direction is needed because only 

this component is responsible for the levitation force 

generation. Therefore, this radial component is given as: 
 

 

  𝐵𝑟 =
𝜇0

4𝜋
 

𝜕

𝜕𝐫
∮

𝐌(𝐫′) ∙ 𝐧

|𝐫 − 𝐫′|
𝑆

𝑑𝑆. (4) 

 

Furthermore, if we assume that the current density is 

uniform and constant: 
 

 
   𝐽𝜑 =

𝑁𝑐 ∙ 𝐼𝑐

(𝑟𝑎 − 𝑟𝑖) ∙ ℎ𝑐

 , (5) 
 

where 𝑁𝑐 is the number of coil turns, 𝐼𝑐 the current 

through the coil, (𝑟𝑎 − 𝑟𝑖) ∙ ℎ𝑐 the cross sectional area of 

the coil and under consideration of the parameters shown 

also in Fig. 3, the expression for the levitation force 𝐹𝑧 at 

the magnet position 𝑥 = 𝑦 = 0 can be simplified to a 

scalar function in z-direction: 
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 𝐹𝑧

=
𝑁𝑐 ∙ 𝐼𝑐

(𝑟𝑎 − 𝑟𝑖) ∙ ℎ𝑐

𝜇0

4𝜋
∫ (

∂

∂𝐫
∮

𝐌(𝐫′) ∙ 𝐧

|𝐫 − 𝐫′|
𝑆

𝑑𝑆)  𝑑𝑉

𝑉

. 
(6) 

 

 
 

Fig. 3. Top view (left) and side view (right) of the 

permanent magnet actuator. 
 

The difference vector 𝜉𝛽 = |𝐫 − 𝐫′| expressed in 

cylindrical coordinates using the relation 𝐫 = {𝑥, 𝑦, 𝑧} =
{𝑟𝑐𝑜𝑠𝜑, 𝑟𝑠𝑖𝑛𝜑, 𝑧} and 𝐫′ = {𝑥′, 𝑦′, 𝑧′} = {𝑟′𝑐𝑜𝑠𝜑, 𝑟′𝑠𝑖𝑛𝜑, 
𝑧′} yields: 
 

𝜉𝛽  = |𝒓 − 𝒓′| 

(7) 
 

= √(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + (𝑧 − 𝑧′𝛽)2 

 
= √𝑟2 + 𝑟′2 − 2𝑟𝑟′𝑐𝑜𝑠 (𝜑 − 𝜑′) + (𝑧 − 𝑧′𝛽)2. 

 

In addition to that, if the infinitesimal volume element 

𝑑𝑉 as well as the infinitesimal surface element 𝑑𝑆 is also 

expressed in cylindrical coordinates as 𝑑𝑉 = 𝑟d𝑟d𝜑d𝑧 

and 𝑑𝑆 = 𝑟′d𝑟′d𝜑′ respectively, and under consideration 

of Fig. 3, the levitation force 𝐹𝑧 now becomes: 
 

𝐹𝑧 =
𝑁𝑐 ∙ 𝐼𝑐

(𝑟𝑎 − 𝑟𝑖) ∙ ℎ𝑐

𝜇0𝑀

4𝜋
∫ ∫ ∫

𝜕

𝜕𝑟

𝑟𝑎

𝑟𝑖

2𝜋

0

ℎ𝑐

0

∫ ∫ (
𝑟′

𝜉2

−
𝑟′

𝜉1

)

𝑅

0

2𝜋

0

 
 

 ∙  𝑑𝑟′𝑑𝜑′ ∙ 𝑟𝑑𝑟𝑑𝜑𝑑𝑧.                                         (8) 
 

However, this equation allows determining the 

levitation force only if the center of the permanent 

magnet is coaxial with the center of the circular coil as 

can be seen in Fig. 3. 

Despite this, in 6-DoF magnetic levitation system, 

the magnet moves in the horizontal plane xp and yp from 

the central position (Fig. 3). Therefore, the analytical 

equation must consider the actual mover position 

(𝑥𝑝, 𝑦𝑝) over the whole travel range.  

This can be done by modifying the integrand of (6) 

with the relationship 𝒓′ = {𝑥′, 𝑦′, 𝑧′} = {𝑥𝑝 + 𝑟′𝑐𝑜𝑠𝜑,  

𝑦𝑝 + 𝑟′𝑠𝑖𝑛𝜑, 𝑧′} as shown in the final form (9) at the 

bottom of this page. 

At this point, it should be noted that the derivation 

of semi-analytical expressions for the destabilizing 

forces in the horizontal direction can be done in the same 

manner. Thus, the force equations for the Cartesian force 

components in the x- and y-direction can be derived in 

the final form as shown in (11) and (12), respectively. 

Based on the derived expressions, which are easily 

implemented in MATLAB, and under consideration of 

the parameters and dimensions shown in Table 1, the 

levitation and the destabilizing propulsion forces can be 

calculated at every value of 𝑥𝑝  and 𝑦𝑝  in millimeters in 

the horizontal plane (𝑥𝑝, 𝑦𝑝) ∈ ℝ. 

 

Table 1: Dimensions and parameters for the levitation 

force calculation 

Parameter Symbol Value Unit 

Number of turns 𝑁𝑐 200  

Current 𝐼𝑐 1 A 

Remanence of PM 𝜇0𝑀 1.44 Vs/m2 

Coil height ℎ𝑐 24 mm 

Magnet radius 𝑅 10 mm 

Coil inner side 𝑟𝑖 23.5 mm 

Coil outer side 𝑟𝑎 33.5 mm 

Neg. magnetic charges 

height 
𝑧1 26 mm 

Pos. magnetic charges 

height 
𝑧2 31 mm 

 

        𝐹𝑧(𝑥𝑝 , 𝑦𝑝) =
𝑁𝑐 ∙ 𝐼𝑐

(𝑟𝑎 − 𝑟𝑖) ∙ ℎ𝑐

𝜇0𝑀

4𝜋
∫ ∫ ∫

𝜕

𝜕𝑟

𝑟𝑎

𝑟𝑖

2𝜋

0

ℎ𝑐

0

∫ ∫ (∑
(−1)𝛽 ∙ 𝑟′

Υ𝛽

2

𝛽=1

)

𝑅

0

2𝜋

0

  𝑑𝑟′𝑑𝜑′ ∙ 𝑟𝑑𝑟𝑑𝜑𝑑𝑧, (9) 

where   

        Υ𝛽 = √𝜉𝛽
2 + 𝑥𝑝

2 + 𝑦𝑝
2 − 2r(𝑥𝑝 cos(φ) + 𝑦𝑝 sin(φ)) + 2r′(𝑥𝑝 cos(𝜑′) + 𝑦𝑝 sin(𝜑′)),  (10) 

 

     𝐹𝑥(𝑥𝑝, 𝑦𝑝) =
𝑁𝑐 ∙ 𝐼𝑐

(𝑟𝑎 − 𝑟𝑖) ∙ ℎ𝑐

𝜇0𝑀

4𝜋
∫ ∫ ∫

𝜕

𝜕𝑧

𝑟𝑎

𝑟𝑖

2𝜋

0

ℎ𝑐

0

∫ ∫ (∑
(−1)𝛽 ∙ 𝑟′ cos(φ)

Υ𝛽

2

𝛽=1

)

𝑅

0

2𝜋

0

  𝑑𝑟′𝑑𝜑′ ∙ 𝑟𝑑𝑟𝑑𝜑𝑑𝑧, (11) 

 

    𝐹𝑦(𝑥𝑝 , 𝑦𝑝) =
𝑁𝑐 ∙ 𝐼𝑐

(𝑟𝑎 − 𝑟𝑖) ∙ ℎ𝑐

𝜇0𝑀

4𝜋
∫ ∫ ∫

𝜕

𝜕𝑧

𝑟𝑎

𝑟𝑖

2𝜋

0

ℎ𝑐

0

∫ ∫ (∑
(−1)𝛽 ∙ 𝑟′ sin(φ)

Υ𝛽

2

𝛽=1

)

𝑅

0

2𝜋

0

  𝑑𝑟′𝑑𝜑′ ∙ 𝑟𝑑𝑟𝑑𝜑𝑑𝑧. (12) 
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Figures 4 to 6 show exemplary the calculation of the 

force components in the horizontal square plane from 

−10 mm to +10 mm.  
 

 
 

Fig. 4. 𝐹𝑧 as a function of the mover position (𝑥𝑝 , 𝑦𝑝). 
 

 
 

Fig. 5. 𝐹𝑥 as a function of the mover position (𝑥𝑝 , 𝑦𝑝). 
 

 
 

Fig. 6. 𝐹𝑦 as a function of the mover position (𝑥𝑝, 𝑦𝑝). 
 

As can be seen in these figures, all force components 

are strongly position-dependent due to the non-uniform 

magnetic field generated by the cylindrical permanent 

magnet. The force that the circular coil can generate in 

order to levitate the moving element is minimal at the 

central position, i.e., 𝑥𝑝 = 𝑦𝑝 = 0. However, this levitation 

force increases when the magnet deviates laterally away 

from the central position. The same behavior shows also 

the destabilizing force curves. 

In general, the derived force equations are semi-

analytical, i.e., after two consecutive analytical integrations 

and one analytical derivation with the Symbolic Math 

Toolbox of MATLAB, it is difficult to express the 

remaining expression in an analytical form. Therefore, 

the remaining analytical expression must be converted to 

a function handle using matlabFunction and calculated 

numerically using the intern numerical integration function 

integral3. In order to simplify the calculation procedure, a 

MATLAB program is written which contains the analytical 

and numerical calculation. 

 

IV. VERIFICATION OF THE EQUATIONS 
In order to verify the derived equations, a 3D-FEM 

model of the cylindrical permanent magnet actuator has 

been implemented in Maxwell 3D. Moreover, a prototype 

of the permanent magnet actuator was developed in order 

to measure the generated forces using a precision load 

cell. The 3D-FEM model and the prototype can be seen 

in Fig. 7. 
 

 
 

Fig. 7. 3D-FEM model (left) and prototype of the 

permanent magnet actuator (right).  
 

The permanent magnet used in this study is a 

neodymium–iron–boron (NdFeB) magnet, which has a 

relative square hysteresis loop with high coercivity and 

high remanence [33]. 

Figure 8 (a) compares the current-levitation force 

curve using the derived equation (9) with the measured 

results and with 3D-FEM in cases where the mover is at 

the centered position and the air gap is equal to z=1mm. 

As can be observed, all curves show a linear relation 

between the current and the levitation force. This linear 

relation is as expected, because according to (9), the coil 

current is directly proportional to the levitation force. A 

further explanation for the linear relationship is that there 

are no ferromagnetic materials that can cause a non-

linear relationship due to hysteresis and saturation, i.e., 

from an electromagnetic point of view it is a linear 

system.  
Compared to reluctance actuators, where the  

-10

0

10

-10

0

10

0

0.1

0.2

0.3

0.4

 

Displacement xp [mm]

Posit ion-dependent levitat ion force

Displacement yp [mm]
 

L
ev

it
a
ti

o
n

F
o
rc

e
F

z
[N

]

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

-10

0

10

-10

0

10

-0.04

-0.02

0

0.02

0.04

 

Displacement xp [mm]

Posit ion-dependent propulsion force

Displacement yp [mm]
 

P
ro

p
u
ls

io
n

F
o
rc

e
F

x
[N

]

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

-10

0

10

-10

0

10
-0.05

0

0.05

 

Displacement xp [mm]

Posit ion-dependent propulsion force

Displacement yp [mm] 

P
ro

p
u
ls

io
n

F
o
rc

e
F

y
[N

]

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

LAHDO, STRÖHLA, KOVALEV: 3D FORCE OF AN IRONLESS CYLINDRICAL PERMANENT MAGNET ACTUATOR 524



 

levitation force decreases rapidly as the air gap grows  

the levitation force in the ironless actuator decreases 

slightly (Fig. 8 (b)). This advantageous characteristic 

allows compensating the force variation along the z-axes 

easily using control algorithms. 

Figure 8 (c) shows the influence of the horizontal 

movement on the levitation force. It can be observed that 

the force increases when the magnet deviates laterally 

from the central position (similar to Fig. 5 and Fig. 6). 

 

 

 

 
 

Fig. 8. Measured and calculated curves of the permanent 

magnet actuator. 

If the center of the moving permanent magnet is 

coaxial with the center of the circular coil, then the 

destabilizing force components in the x- and y-direction 

are zero due to symmetry. However, when the magnet 

moves from the central position, it experiences also in 

addition to the levitation force a destabilizing (propulsion) 

force that tends to push the permanent magnet laterally 

away from the center position. This unstable behavior 

can be seen in Fig. 9.  
 

 
 

Fig. 9. Destabilizing force 𝐹𝑥. 
 

Since the magnitude of the destabilizing force is too 

small to measure accurately, we verified the derived 

equation only with 3D-FEM in case the magnet moves 

only along the x-axes (the y-component of the force is 

zero in this case). 

As evident from all the figures, there is an excellent 

agreement between the calculated forces using the 

derived equations (9)-(12) and 3D-FEM as well as the 

measurements. 

The maximum error between the solutions of 3D-

FEM and our equations is below 1%, whereas the maximum 

error between our equation and the measurements is 

below 6%. Apart from the manufacturing tolerances in the 

magnet and coil dimensions as well as the mechanical 

and mounting tolerances of our experimental setup, the 

main reason for the observed error is that our equation 

assumes an ideal magnet with 𝜇𝑟 = 1. However, the 

magnetization of the magnet is not perfectly uniform  

and the relativel permeability of real available NdFeB 

permanent are close to 1 (𝜇𝑟 = 1.05 … 1.1) with 5% 

tolerance on magnetization strength [33]. In [21], it is 

shown that the assumption of an ideal magnet cause an 

error of approximately 3%.  

Despite this, our proposed equations can be used for 

studying the characteristics of the permanent magnet 

actuator and these results can be used in the design and 

real-time control for high precision 6-DoF magnetic 

levitation systems, e.g., shown in [30] and [31]. Compared 

to 3D-FEM software, the calculation of the magnetic 
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fields and the generated forces as well as the optimization 

of the permanent magnet actuator can be obtained in a 

very short calculation time. 
 

V. CONCLUSION 
In this paper, new and compact equations for 

calculating the magnetic force components of a cylindrical 

permanent magnet for ironless magnetic levitation 

systems were derived and presented. These equations can 

help to evaluate quickly and precisely the performance 

of the proposed actuator. Moreover, the derived equations 

consider also the position-dependent characteristic of the 

force components. They provide an interesting alternative 

to 3D-FEM software since they are also accurate and 

easily applicable for researchers. The semi-analytical 

results are verified with 3D-FEM and with our prototype 

which illustrate the accuracy of these force equations. 
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