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Abstract ─ The analysis on nonlinear dynamics of  

a rotor-AMB system is conducted in this paper. The 

nonlinearity of electromagnetic force and current 

saturation effect are taken into account. The nonlinear 

model of the rotor-AMB system is built and the nonlinear 

dynamic behaviors of the system in both resonance region 

and non-resonance region are investigated through 

numerical integration method. This paper shows that the 

rotor-AMB system can exhibit some complicated nonlinear 

dynamic behaviors, such as soft spring characteristic  

of the amplitude-frequency response curve, the jump 

phenomenon, and pitchfork bifurcation. And the effects 

of exciting force and current saturation on these nonlinear 

dynamic behaviors of the system are discussed. 

 

Index Terms ─ Current saturation, nonlinear analysis, 

numerical integration, pitchfork bifurcation. 
 

I. INTRODUCTION 
As a typical mechatronic product, active magnetic 

bearings (AMBs) can achieve the suspension support of 

the rotor through the electromagnetic forces. An AMB 

system consists of sensors, controllers, power amplifiers, 

and mechanical components. The rotor displacement is 

adjusted by the cooperation of these components. During 

operation, as the rotor deviates from the reference 

position, the displacement is measured by the sensor, 

then measurement signal is transformed into a control 

signal through the calculation of the controller, which  

is imported into the power amplifier hereafter. Based  

on the control signal, the power amplifier exports the 

control current which will play a key role in magnetic 

bearings to generate appropriate electromagnetic force to 

suspend the rotor. Compared with conventional bearings, 

AMBs have a lot of advantages, such as no mechanical 

friction between rotor and stator, no wear, lubrication 

free, long operation life with low maintenance cost, etc. 

What is more, dynamic characteristics of the rotor can be 

controlled through the AMBs during system operation. 

Due to these advantages, AMBs have been widely 

applied in high-speed rotating machinery, especially 

those working in special environments.  

The modeling, dynamics analysis, and controller 

design of the rotor-AMBs system were usually based on 

linearized models which described the characteristics of 

the system approximately in the linear region near to 

static levitation position [1], and system identifications 

were also based on the linearized models [2,3]. The 

linearized model can meet the research needs of 

vibration modal analysis and controller design under  

the condition of small rotor displacements. However,  

the rotor-AMB systems are substantially nonlinear. The 

electromagnetic force is a nonlinear function of currents 

and rotor displacement, and there may exist hysteresis, 

voltage saturation, and current saturation effects in the 

system. With the increasing of rotating speed and more 

extensive use of new structures and materials, the 

nonlinearities of the rotor-AMB system have become 

increasingly prominent. Thus the system may exhibit 

many complicated nonlinear phenomena, such as  

jump phenomenon, co-existence of multiple solutions, 

sensitivity to initial conditions, bifurcations and even 

chaos [4]. The dynamic characteristics of the rotor-AMBs 

systems are so complicated that linear models could not 

predict the dynamic behaviors and the stability of the 

system accurately under various operating conditions 

[5]. Therefore, it is essential to carry out the nonlinear 

dynamics analysis of the rotor-AMBs system. 

There have been extensive publications about 

nonlinear characteristics of rotor-bearing systems. For 

example, Refs. [6,7] investigated the nonlinear dynamics 

of rotor-film bearing systems and got some valuable 

results, which were heuristic for the nonlinear dynamics 

analysis of rotor-AMB systems. However, rotor-AMB 

systems have some special nonlinear factors because of 

features of the AMBs, such as the delay of control force 

[8,9], current, voltage and magnetic saturation [10], and 

time-varying stiffness [11]. 

The nonlinear phenomena of rotor-AMB systems 

have been the focuses of researchers. Many analysis 
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methods have been developed and many interesting 

results have been found. Nonlinear analysis methods 

applied to rotor-AMB systems can be divided into two 

categories, namely numerical methods and analytical 

methods. References [12-14] analyzed the bifurcations 

of a flexible rotor supported by AMBs numerically. The 

dynamic behaviors of the system under different operating 

conditions were studied using the trajectory diagrams, 

bifurcation diagrams, power spectra and Poincaré maps 

in [12]. The effects of the system parameters on dynamic 

characteristics were analyzed and the key factors affecting 

system performance were identified and demonstrated. 

References [13,14] investigated the nonlinear dynamic 

responses of the flexible rotor-AMBs system numerically 

and proved that nonlinear phenomena such as period-

doubling motion, quasi-periodic motion, and even chaotic 

motion might appear. Moreover, the approximate 

analytical methods including harmonic balance method, 

asymptotic perturbation method [15], the method of 

multiple scales [4], and KBM method [16,17], have been 

applied widely in nonlinear analysis of rotor-AMB 

systems. The nonlinear oscillations of a rigid rotor-AMB 

system taking the time delay into account were studied 

using the approximate analytical method in [18], and the 

effects of system parameters on the dynamic behaviors 

were analyzed. Reference [4] applied the method of 

multiple scales to obtain an analytical approximate 

solution of a rotor-AMB system subjected to primary 

resonance excitations in the presence of 1:1 internal 

resonance. Based on the analytical approximate solution, 

a verity of nonlinear phenomena were studied and the 

analysis results were validated by numerical simulation. 

References [15,19] utilized the asymptotic perturbation 

method and the method of multiple scales respectively to 

investigate the responses of the rotor-AMB system with 

periodic time-varying stiffness and the system exhibited 

some typical nonlinear phenomena. References [16,17] 

utilized KBM method to investigate the nonlinear 

dynamics of the rotor-bearing system with hysteretic 

characteristics. 

These aforementioned reports about the nonlinear 

analysis of rotor-AMB systems focused on rotor vibration 

amplitudes, which will have a significant effect on system 

stability. However, the rotor-AMB system has a larger 

air gap between the rotor and stator than rotor systems 

supported by conventional bearings due to the non-contact 

suspension support feature. Under certain operating 

conditions, the nonlinear rotor-AMB system may have 

multiple equilibrium solutions, namely, the rotor may 

vibrate in different equilibrium positions. In this case, the 

rotor’s maximal instantaneous displacement is dependent 

on both rotor equilibrium position and vibration amplitude. 

And if rotor displacement is large, the rotor-AMB system 

may lose its stability. Therefore, equilibrium solutions 

also have an important influence on system stability as 

well as the vibration amplitude. There were few reports 

about rotor equilibrium positions of the rotor-AMB 

system. Nevertheless, the rotor-AMB system is expected 

to operate in non-resonance regions, where the rotor 

doesn’t exhibit complicated characteristics in vibration 

amplitude generally. Whereas there may exist some 

other nonlinear phenomena in non-resonance regions, 

which also have effect on the system performance  

but didn’t attract enough attention. For example, the 

pitchfork bifurcation phenomenon was discovered in 

site-commissioning of a rotor-AMB system with current 

saturation effect, which meant that new equilibrium 

solutions occurred in the system. It was detrimental to 

system performance. 

In this paper, a single-degree-of-freedom rotor-AMB 

system with current saturation effect is investigated 

through numerical integration method. The nonlinear 

model of the rotor-AMB system considering current 

saturation effect is deduced firstly. Then the amplitude-

frequency response characteristics and rotor dynamic 

behaviors in the non-resonance region are analyzed 

numerically based on the system differential equation of 

motion. The system exhibits soft-spring characteristics, 

jump phenomena, and pitchfork bifurcation. The effects 

of exciting force and current saturation on system dynamic 

behaviors are illustrated and controller parameter 

modification is conducted. This paper concentrates on 

nonlinear phenomena of the rotor-AMB system in both 

non-resonance and resonance regions, which extends the 

nonlinear dynamic analysis of the rotor-AMB system to 

full speed range and enriches the nonlinear dynamic 

theory of the rotor-AMB system. The investigation of 

pitchfork bifurcation in non-resonance can supply the 

research gap in nonlinear analysis of the rotor-AMB 

system and help to understand the system’s nonlinear 

dynamics in the round. And through the comprehensive 

nonlinear dynamics analysis of the system with current 

saturation, the nonlinear dynamic behaviors are illustrated 

in detail and the causes of the nonlinear phenomenon  

are explored in depth. The analysis result can play an 

important role in the efforts to improve system 

performance. For example, the controller adjustment 

based on nonlinear analysis results can achieve the goal 

of improving system performance that the efforts based 

on linear analysis couldn’t do. 
 

II. THEORETICAL MODEL 
This paper takes an actual rotor-AMB system as a 

research object. During commissioning, the system lost 

its stability and the current saturation phenomenon was 

discovered by analyzing the operational data. In order to 

explore the instability mechanism, the nonlinear model 

is built and nonlinear analysis through cell mapping 

method is conducted by authors of this paper [20]. In this 

paper, the nonlinear dynamics of the rotor-AMB system 

is investigated using numerical integration method and 

dynamic behaviors in both resonance and non-resonance 
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regions are analyzed. Just as Ref. [20], the rotor-AMB 

system is simplified into a single-degree-of-freedom 

model for simplicity of the analysis in this paper, which 

focuses on the direction where nonlinear phenomena 

occur. 
 

A. System model 

The diagram of the simplified system model is 

shown in Fig. 1. 
 

i
F y

dF

i

 
 

Fig. 1. Schematic diagram of single-degree-of-freedom 

rotor-active magnetic bearings system. 

 

Where, y represents the displacement of the rotor, 
,i i 

 represents the currents from the power amplifier to 

the magnets respectively, F represents the electromagnetic 

force, and dF  represents the exciting force. The exciting 

force is assumed to be sinusoidal, as shown in equation 

(1): 

  cos .d dF F t   (1) 

The open-loop system is inherently unstable. For the 

analyzing the dynamic characteristics of the system, a 

PD controller is adopted to keep the system stable. The 

magnetic hysteresis and fringing effect are not taken into 

account. The sensor is taken as a proportional component 

whose gain is k. And a current-type power amplifier is 

employed in the system, in which the current saturation 

is taken into account. The closed-loop diagram of the 

system is shown in Fig. 2. 
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Fig. 2. Closed-Loop Diagram of Rotor-AMB System.  
 

In the actual system, the currents in the power 

amplifier are limited to a certain range. Thus, the currents 

of the two magnets, namely, ,i i 
, can be expressed as a 

piecewise function shown in equation (2): 
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 (2) 

where, 
0i  represents the bias current of the magnetic 

bearing and i  represents the control current, y  represents 

the first order derivative of rotor displacement, and 

‘med’ means the median value of the three values in the 

bracket. 

In the rotor-AMB systems, the electromagnetic force 

is a nonlinear function of the rotor displacement and the 

currents in magnetic bearings. The electromagnetic force 

model in Ref. [1] is adopted and can be formulated as 

equation (3): 

 
2 2

0 0

1
,

4
F

i i
F k

s y s y
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    
     
      

 (3) 

where, 
0s  is the air gap of the bearing at the reference 

position, and 
Fk  is the force coefficient related to the 

system. It can be seen from equation (3) that the existence 

of the current saturation makes nonlinear characteristics 

of the system more complicated. 

Based on basic laws of the classical mechanics, the 

governing equation of the closed-loop system shown in 

Fig. 2 is deduced, as shown in equation (4): 

   
1

cos ,dy F F t
m

     (4) 

where m is the mass of the rotor. 

Then the mathematical model of the rotor-AMB 

system is made up of the equations (1), (2), (3), (4). 

 

B. Nondimensionalization 

In order to facilitate analysis and obtain the visualized 

results, the governing equations of the system obtained 

above are transformed into the dimensionless form by 

introducing the following dimensionless variables and 

corresponding notations: 
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 (5) 
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where, 
0  is the rated operating speed of the rotor. 

Substitute equation (5) into equations (1), (2), (3), and 

(4), then dimensionless form model of the system is 

obtained, as shown in equation (6): 
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 (6) 

In the non-dimensional model, 
0 =0.5,i  45000,k 

=0.0099.Fk  In the following, the values of these variables 

are fixed at these values and other parameters will be 

assigned. 
 

III. RESULTS AND DISCUSSIONS 
Based on the dimensionless form model obtained in 

the previous section, the nonlinear dynamics of the rotor-

AMB system is investigated numerically. In this section, 

equation (6) is solved to get time series solutions of 

multiple variables by Runge-Kutta 5(4) algorithm [21] 

under different conditions. Then the time responses of 

rotor displacement, currents, and electromagnetic force 

are obtained. Based on the rotor displacement time series 

responses, the displacements at chosen Poincaré points 

of motion periods are gotten by Poincaré map and 

vibration amplitude a is calculated according to equation 

(7): 
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(7)  

In the following of this section, the amplitude-

frequency response of the system is acquired and the 

pitchfork bifurcation phenomenon is discovered and 

interpreted. Based on analysis results, the controller 

parameters are adjusted to avoid pitchfork bifurcation, 

which has a detrimental effect on system stability. 
 

A. Amplitude-frequency response of system 

The amplitude-frequency response is one of the 

important characteristics of the rotor-AMB system, which 

play a key role in the system performance analysis and 

controller design. However, the amplitude-frequency 

response based on nonlinear model differs from that 

based on the linear model.  

In this subsection, parameters of the PD controller 

are fixed at p' = 4.232×10–5, d' = 1.0668×10–4. Then 

amplitude-frequency response curves of the rotor-AMB 

system for different exciting magnitudes are obtained. 

When the exciting force’s magnitudes are 0.354, 0.4132, 

0.4722, the amplitude-frequency response curves are 

shown in Fig. 3 respectively. In Fig. 3, a is the 

dimensionless vibration amplitude of rotor situated in 

zero equilibrium position. In this case, the rotor’s 

maximal instantaneous displacement only depends on 

vibration amplitude and is just the vibration amplitude. 

It contrasts with that in case of pitchfork bifurcation 

which will be described in the next subsection. 

 

 
 

Fig. 3. The amplitude-frequency response of the rotor-

AMB system. 

 

It can be seen from Fig. 3 that the vibration 

amplitude of the rotor is not only dependent on exciting 

magnitudes, but also related to exciting frequencies. With 

the increase of exciting force, the vibration amplitude 

magnifies. Meanwhile, as the exciting frequency 

increases, the rotor amplitude first increases and then 

decreases after some specific frequency where there is a 

resonance peak. This result is consistent with that based 

on the linear system. However, the nonlinear system also 

exhibits more complicated phenomena, such as soft-

spring characteristics and jump phenomenon. As shown 

in Fig. 3, the frequencies where resonance peaks occur 

are different for different exciting magnitudes. As the 

exciting magnitude increases, the resonance peak moves 

to low-frequency zone, i.e., the resonant frequency 

becomes smaller. In addition, there is another nonlinear 

phenomenon in Fig. 3. In the vicinity of resonance peaks, 

the vibration amplitudes mutate with a slight exciting 

frequency change. Take =0.4722dF  as an example, the 

amplitude a increases gradually as frequency increases 

until it reaches the point A. However, at the point A,  

as frequency increases lightly, the amplitude a jumps 

from the point A to the point B and the rotor vibration 

amplitude reaches the peak value. Subsequent to that,  

the amplitude decreases gradually with the increase of 

exciting frequency. It is a typical jump phenomenon of 

nonlinear systems. Furthermore, it can be seen in Fig. 3 

that, the larger exciting force is, the more obvious the  

ZHANG, FAN, SUN, ZHAO, YAN, ZHAO, SHI: NONLINEAR ANALYSIS OF ROTOR-AMB SYSTEM WITH CURRENT SATURATION EFFECT 560



jump phenomenon and soft-spring characteristics are. 

In order to explore the causes of nonlinear 

phenomena in the resonance region of the rotor-AMB 

system, the current and electromagnetic force at point B 

are shown in Fig. 4 and Fig. 5. In Fig. 5, ,F F   represent 

the attractive force generating by the two magnets 

respectively, which can be formulated as 

2

1
F

i

y
F k 



 
 





. 

It can be seen that severe current saturation has occurred 

and the electromagnetic force acting as restoring force in 

the system distort. It leads to the soft-spring characteristic 

and jump phenomenon, which have detrimental 

influences on the stability of the rotor-AMB system. In 

brief, the nonlinearity of electromagnetic force and current 

saturation existing in the system are the causes of 

complicated dynamic behaviors when the rotor-AMB 

system is subjected to the exciting force.  
 

 
 

Fig. 4. The partial enlarged detail of current at point B of 

Fig. 3. 
 

 
 

Fig. 5. The partial enlarged detail of electromagnetic 

force at point B of Fig. 3.  

  

B. Pitchfork bifurcation 

When the system is running stably, the rotor speed 

is generally far from the resonance zone. However, the 

rotor-AMB system with current saturation effect still 

exhibits the nonlinear phenomenon when the system is 

operating in the non-resonance region. In this subsection, 

the oscillations of the rotor under different initial 

conditions are investigated and the bifurcation diagram 

of the rotor versus the exciting force is obtained. The 

effects of the exciting force and the current saturation in 

the power amplifier on the vibration of the rotor are also 

illustrated.  

In the analysis, these parameters of the system  

are fixed at p' = 4.232×10–5, d' = 1.0668×10–4, =1 .  

Two different initial conditions are respectively set as 

10 10[ 0.0536, 0.0093]y y   ,
20 20[ 0.403, 0.0093]y y    . 

The dynamic behaviors of the system for different 

exciting forces are analyzed. The time series responses 

of the rotor-AMB system subjected to exciting forces 

under different initial conditions are solved by Runge-

Kutta 5(4) method with variable step size. And the rotor 

displacements at Poinceré map points which are the 

specific time instants of motion periods are obtained 

from corresponding time series responses through 

Poincaré map. Then the bifurcation diagram versus the 

amplitude of the exciting force is obtained, as shown in 

Fig. 6. The abscissa of the Fig. 6 is the magnitude of the 

exciting force, while the ordinate is the displacement at 

the specific Poincaré map point. Different from that in 

subsection A, the rotor displacements at Poincaré map 

points 
21,y y   in Fig. 6 depend on both rotor equilibrium 

positions and vibration amplitudes. In order to explain 

the relationship between the rotor displacements at 

Poincaré map points shown in Fig. 6 and time series 

response, taking 16.83dF   as an example to point out 

the correspondence between Fig. 6 and Fig. 10. The 

displacements shown in Fig. 6 are the mean values of the 

Poincaré map points’ displacements in Fig. 10 after 

system enters steady state. It is noted that Fig. 10 is the 

partial enlarged drawing of the time series response and 

the mapping points shown in Fig. 10 are only part of all 

mapping points. Because of the chosen mapping points, 

1y  is the maximal instantaneous displacement under 

corresponding initial condition, while 
2y   is not. But, the 

maximal instantaneous displacements for two different 

initial conditions are both the sum of the absolute value 

of equilibrium positions and vibration amplitude. 

It can be seen in Fig. 6 that when the exciting force 

is small, the amplitudes of the rotor vibration are small 

and rotor displacements of the Poincaré map points  

for different initial conditions are consistent, i.e., both  

rotor equilibrium positions and vibration amplitudes for 

two different initial conditions are the same. The rotor 

vibrates at zero equilibrium position for small exciting 

force and with the increase of the exciting force, the 

vibration amplitude tends to be larger. In case of small 

exciting forces, the responses of the rotor-AMB system 

based on the nonlinear model are consistent with those 
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based on the linearized model and rotor displacements 

depend only on vibration amplitudes. However, as  

the exciting force continues to magnify, the pitchfork 

bifurcation appears in the vicinity of 16.04dF  , where 

rotor displacements for different initial conditions are 

different. The rotor deviates from zero equilibrium 

position and vibrates at either of two new different 

equilibrium positions. This is a typical supercritical 

pitchfork bifurcation. With further increase of exciting 

force, the pitchfork bifurcation aggravates. In the case  

of pitchfork bifurcation, the Poincaré map points’ rotor 

displacements are not only dependent on vibration, but 

also dependent on rotor vibration positions.  
 

 
 

Fig. 6. Pitchfork bifurcation: rotor displacement at 

Poincaré map points versus exciting magnitude. 
 

In order to understand the bifurcation further and 

reveal the causes of this phenomenon, two different 

exciting forces in Fig. 6 are taken as examples to 

illustrate the influences of the exciting force and current 

saturation on the dynamic behaviors of the rotor. 

For 9.44dF  , the pitchfork bifurcation doesn’t 

appear. The system time series responses, currents in the 

system, and electromagnetic forces are shown in Fig. 7, 

Fig. 8, and Fig. 9, respectively. It is noted that for the 

same exciting force, currents and electromagnetic forces 

in the system for two different initial conditions are the 

same after the system enters steady state. So this paper 

just takes the currents and the electromagnetic forces 

under one initial condition to show the current and 

electromagnetic force state of the system in Fig. 8 and 

Fig. 9. And the same drawing way is used below. 

Figure 7 shows the dynamic response of the rotor for 

9.44dF  . It can be seen that as the exciting force is 

small, the responses of the rotor for two different initial 

conditions tend to be consistent and rotor vibrates 

periodically with the same constant amplitude at the zero 

equilibrium position. According to Fig. 8 and Fig. 9, the 

current saturation doesn’t occur and electromagnetic force 

generated by the current is sinusoidal as expected. In a 

word, as the exciting force is sufficiently small, the system 

can generate sufficient currents and electromagnetic 

force to keep rotor vibrating at zero equilibrium position. 

And the rotor’s maximal instantaneous displacements 

are the rotor vibration amplitudes. It can be seen from 

Fig. 7 that rotor displacements are small during operation. 

 

 
 

Fig. 7. The partial enlarged detail of system time series 

responses for 9.44dF  . 

 

 
 

Fig. 8. The partial enlarged detail of currents for 

9.44dF  .  

 

 
 

Fig. 9. The partial enlarged detail of electromagnetic 

force for 9.44dF  . 
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However, as the exciting force becomes larger, the 

bifurcation appears. For 16.83dF  , the system time series 

response, currents in the system, and electromagnetic force 

are shown in Fig. 10, Fig. 11, and Fig. 12, respectively. 
 

 
 

Fig. 10. The partial enlarged detail of system time series 

responses for 16.83dF  . 
 

 
 

Fig. 11. The partial enlarged detail of current for 

16.83dF  . 

 

 
 

Fig. 12. The partial enlarged detail of electromagnetic 

force for 16.83dF  . 

It can be seen from Fig. 10 that system time series 

responses for slightly different initial conditions are  

very different for 16.83dF  . The rotor may vibrate at 

different positions deviating from the zero equilibrium 

position and the new possible equilibrium positions  

are symmetrical about the original equilibrium position. 

Figure 11 shows conspicuous current saturation has 

occurred. And the electromagnetic force shown in Fig. 

12 has distorted seriously. In case of current saturation, 

as the exciting force continues to magnify, the vibration 

amplitude of the rotor tends to increase, and the needed 

restoring force calculated by the controller is larger. That 

means the current in the magnetic bearings should have 

continued to magnify. However, the existence of the 

current saturation has limited the increase of the 

electromagnetic force. At zero equilibrium position, the 

electromagnetic force contributed by the currents and 

displacement of the rotor is not enough to suppress the 

vibration effectively. In order to keep the balanced state, 

another factor affecting the electromagnetic force, namely 

the displacement of the rotor, should be larger in the 

presence of current saturation. Hence, the rotor deviates 

from the zero equilibrium position to new equilibrium 

positions. It follows that the sensitivity of the nonlinear 

system to initial conditions leads to the pitchfork 

bifurcation. 

In this case, the pitchfork bifurcation occurs. The 

rotor deviates from zero equilibrium position. The rotor’s 

maximal instantaneous displacement is the sum of the 

absolute value of new equilibrium and vibration amplitude. 

As Fig. 6, Fig. 7 and Fig. 10 show, the rotor equilibrium 

position has a prominent effect on the rotor’s maximal 

instantaneous displacement. So, in order to keep rotor-

AMB system stable during operation, the equilibrium 

positions of the system are important as well as vibration 

amplitudes. 

It can be concluded that: as exciting force is small, 

there is no current saturation in the rotor-AMB system and 

the zero equilibrium solution exists and is stable. The rotor 

displacement is only dependent on vibration amplitude. 

However, with the increase of exciting force, the current 

saturation occurs gradually and the electromagnetic 

force generated in the system is not large enough to keep 

rotor vibrating at zero equilibrium position. The zero 

equilibrium solution loses its stability and two new 

equilibrium solutions come up. And it is a typical 

supercritical pitchfork bifurcation. So, as exciting force 

is large, the rotor’s maximal instantaneous displacement, 

which has a great effect on the system stability, is 

dependent on both equilibrium position and vibration 

amplitude of the rotor-AMB system. 

 
C. Controller parameter modification 

According to the analysis results in the previous 

subsection, the current saturation is the main causes of 
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pitchfork bifurcation. In this subsection, the controller 

parameter adjustment is conducted to avoid the current 

saturation and pitchfork bifurcation phenomenon during 

system operation.  

Through the analysis results in subsection B, it  

is found that controller parameters can influence the 

severity of current saturation. The smaller proportional 

gain p' is, the more serious the current saturation. While 

the differential gain d' has the opposite effect that the 

larger differential gain is, the more serious current 

saturation becomes. As pitchfork bifurcation appears, the 

rotor’s maximal instantaneous displacement becomes 

larger, which has an adverse effect on system stability. 

In order to keep the system stable, the bifurcation should 

be prevented by increasing proportional gain p' and 

decreasing differential gain d'. In the actual system, the 

modification of controller parameters is also limited by 

other factors.  

In the next analysis, controller parameters are 

modified to be p' = 4.461×10–5, d' = 4.117×10–5 based on 

the operating condition of the actual system. The change 

of rotor displacements at Poincaré map points versus 

exciting magnitude for two different initial conditions is 

shown in Fig. 13. Compared with Fig. 6, the pitchfork 

bifurcation disappears after controller parameter 

modification. The rotor vibrates at the zero equilibrium 

position for all exciting forces and vibration amplitude 

tends to be larger with the increase of exciting force. 

Also take 16.83dF 
 
as an example to show the current 

and electromagnetic force in this case, as shown in Fig. 

14 and Fig. 15, respectively. It can be seen the current 

saturation doesn’t appear and electromagnetic force 

doesn’t distort. These dynamic behaviors of the system 

prove that modified controller parameters are very 

effective to avoid the pitchfork bifurcation, which is 

detrimental to the stability of the rotor-AMB system. 

 

 
 

Fig. 13. The rotor displacements at Poincaré map points 

versus exciting magnitude after controller parameter 

modification. 

 

 
 

Fig. 14. The partial enlarged detail of current for 

16.83dF 
 
after controller parameter modification. 

 

 
 

Fig. 15. The partial enlarged detail of electromagnetic 

force for 16.83dF   after controller parameter 

modification. 

 

In summary, the large air gap between the rotor and 

stator provides the possibility of pitchfork bifurcation. 

And extreme operating conditions, such as heavy load 

and large disturbance, lead to the phenomenon. The find 

of pitchfork bifurcation shows that nonlinear dynamic 

analysis makes sense in full speed range of the rotor-AMB 

system. And nonlinear phenomena adverse to system 

performance can be prevented through proper controller 

adjustment. 

 

IV. CONCLUSIONS AND PROSPECTS 
In this paper, the rotor-AMB with a PD controller  

is investigated numerically and the nonlinearity of 

electromagnetic force and current saturation effect are 

taken into account in the analysis. The nonlinear dynamic 

behaviors of the rotor-AMB system in both resonance 

and non-resonance regions are analyzed in detail. And 

the effects of the exciting force and the current saturation 

on the dynamic behaviors of the rotor-AMB system  
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are illustrated and the specific controller parameter 

optimization is conducted based on analysis results. The 

results reveal that: 

(1) There are a soft-spring characteristic and jump 

phenomenon in the resonance region. Compared with  

the linear system, the rotor vibration amplitude has a 

saltation when the rotor passes the resonant frequency. 

(2) There is a supercritical pitchfork bifurcation in 

the non-resonance region. With the increase of exciting 

force, the zero equilibrium solution loses its stability  

and two new equilibrium solutions come up. In the case 

of pitchfork bifurcation, the equilibrium positions and 

vibration amplitude affects the rotor displacement which 

has a key effect on the system stability. 

(3) The effects of exciting force and current 

saturation on the nonlinear dynamics are illustrated in 

detail and optimized controller parameters can suppress 

the occurrence of bifurcation effectively. So appropriate 

controller design can prevent complicated nonlinear 

phenomena and keep the system stable. 

The future work of this paper is to apply some 

special numerical integration methods to investigate the 

nonlinear dynamic behaviors more precisely [22]. In fact, 

in this paper, the governing equation is solved by Runge-

Kutta 5(4) algorithm. However, the precision of Runge-

Kutta 5(4) method is not sufficient in some cases 

including solving the stiff equations. And in numerical 

integration, the conservation laws of the mechanical 

quantities may be infringed. Therefore, some different 

numerical integration methods should be utilized in 

nonlinear dynamic analysis of rotor-AMB system. 
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