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Abstract ─ The anomalous diffusion has been discovered 

in many natural motions, it is defined as a phenomenon 

that does not conform to FICK's diffusion law. One of 

the anomalous diffusions is the electromagnetic sub-

diffusion, which indicated the power law decay rate is 

slower than normal -2/5. In this paper, we modeled 

electromagnetic sub-diffusion based on 3D finite-

different time-domain (FDTD) method. Through the 

introduction of roughness parameter in the definition  

of conductivity and the discretization of fractional 

integrations, the electromagnetic sub-diffusion can be 

efficiently modeled. The improved method is verified by 

homogeneous half-space models and anomalous models 

with 3D bodies, the results show that it can model 3D 

electromagnetic sub-diffusion with high precisions and 

has a good performance in the recognitions of anomalous 

bodies.  
 

Index Terms ─ Electromagnetic sub-diffusion, finite-

different time-domain method, fractional calculus. 
 

I. INTRODUCTION 
In the modeling of electromagnetic propagation, the 

electrical conductivity of the ground is usually imagined 

to be uniformly and constant [1-4]. However, the  

ground conductivity usually presents heterogeneity  

and nonlinearity which results in anomalous diffusion 

occurred in the measured data [5-7]. One of the anomalous 

diffusions is called sub-diffusion [8]. It manifests as  

the measured data decays slower especially in late time. 

In this case, the measured data can’t be explained 

accurately based on the classical electromagnetic theory, 

which has hindered the application of electromagnetic 

method in the mineral resource’s exploration and other 

fields in a way. The previous researches have indicated 

that the fractional diffusion equation can provide the 

theoretical basis for the electromagnetic sub-diffusion 

which only need to introduce roughness parameter in the 

expression of electrical conductivity [9-10]. Accordingly, 

the fractional calculous should be solved in time domain 

which makes the discretization of the electromagnetic 

fields difficult. With the development of fractional 

derivative calculation in mathematics, lots of fractional 

order finite difference algorithms are developed [11-13], 

which provides a possibility for the electromagnetic sub-

diffusion modeling in time domain. 

In this paper, we introduce roughness parameter in 

the expression of electrical conductivity in frequency 

domain, and discrete fractional items after the frequency-

time transformation. Accordingly, the iterative equations 

of electromagnetic fields are derived based on a FDTD 

method. At last the improved method is verified by 

different models, the results indicated that it can model 

electromagnetic sub-diffusion well and provide basis 

  for a future study on the electromagnetic anomalous 

induction in time domain. 

 

II. METHOD 
After introduced the roughness parameter β (0 < β < 

1), the electoral conductivity 𝜎𝛽 can be expressed as [9, 

10]: 
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where Г(β) indicates the Gamma function: 
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Discretized (4) can get: 
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Inserting (6) into (3), and after discretion based on 

FDTD [14-17], we can get the iterative formulation of 

electric field: 
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For the magnetic fields, we chose equation (9) as the 

control equation of Hx and Hy and equation (10) as the 

control equation of Hz, 
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Equation (9) and (10) can be expressed in 

components as equation (11-13): 
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The discrete form of equation (11, 13) is performed 

by a FDTD method [9-11] as: 
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III. EXAMPLES 
To test the effectiveness of the improved method, 

homogeneous half-space models and anomalous models 

with 3D bodies are designed. All models have 

117×117×58 grids. The grid is non-uniform with a 

smallest spacing of 10 m and a largest spacing of 120 m. 

The transmitting coil is located at the center of the model 

with a 120 m height, the radius is 7.5 m. The transmitting 

current is 30 A. The receiving coil is 130 m away from 

the transmitting coil with a height of 60 m. The electrical 

conductivity is set as 10 S/m and k=1. In Fig. 1, the 

responses with different roughness parameters are 

compared. 
 

 
 

Fig. 1. The induced voltage with different roughness 

parameters. 
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The roughness parameter is set as 0, 0.03, 0.06 and 

0.09. From Fig. 1 we can find that the induced voltage 

decay slowly as the increase of β which have indicated 

the improved method can model electromagnetic sub-

diffusion efficiently. To verify the precision of the 

FDTD method, the FDTD solutions are compared with 

the numerical solutions calculated by integral method 

[18] in Fig. 2. The roughness parameters are chosen as 

0.2 and 0.9. Figure 2 (a) shows the comparison of the two 

solutions and the relative errors responsibly when β=0.2. 

We can find the two solutions coincide well with a max 

relative error of 2.6%. Figure 2 (b) shows the comparison 

and the relative errors responsibly when β=0.9. The 

relative errors are less than 1.6% in 10 ms. The 

electromagnetic responses in the air with different 

roughness parameters are shown in Fig. 3. 

 

 
 (a) 

 
 (b) 

 

Fig. 2. The comparison of FDTD solutions and numerical 

solutions and the relative errors when: (a) β=0.2 and (b) 

β=0.9.  
 

According to the definition of the generalized 

electrical conductivity, the conductivity varies with time, 

so the roughness parameter doesn’t affect the diffusion 

pattern of electromagnetic wave. Accordingly, the 

responses decay slowly with the increase of roughness 

parameter. 

The anomalous model is designed as Fig. 4. The 

roughness parameter is 0.7. The depth of the 3D body is 

100 m, the size of the body is 410 m×410 m×450 m and 

is set in the center of x-y plane. The conductivity of the 

body is 100 S/m and the conductivity of the background 

is 5 S/m. The slices of electromagnetic responses of   

1.5 ms and 5 ms are shown in Fig. 5. From these slices 

we can find that the responses can reflect the information 

of the 3D body well, which has verified the effectiveness 

of the improved method well again. 
 

 
 (a) 

 
 (b) 
 

Fig. 3. The electromagnetic responses in the air with 

different roughness parameters: (a) β=0.2 and (b) β=0.9. 
 

 
 

Fig. 4. Anomalous model with single 3D body.  
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 (a) 

 
 (b) 

 

Fig. 5. The slices of electromagnetic responses at the 

time of: (a) 1.5 ms and (b) 5 ms. 
 

IV. CONCLUSIONS 
We have introduced roughness parameter in the 

expression of electrical conductivity. After the 

discretization of the fractional item we got the iterative 

formulation of electric field based on FDTD. The 

modeling results validated the effectiveness of the 

improved method in the modeling of electromagnetic 

sub-diffusion. As the discretization of the fractional item 

involved electric fields of every time-step, large memory 

needed consequently. For high-resistance models, as 

more time-steps divided, the method may be limited by 

the computer’s storage. How to reduce the memory 

consumption is the focus of our following research. 
 

ACKNOWLEDGMENT 
This study was supported by the National Natural 

Science Foundation of China (41674109). The authors 

also thank the members of the project committee for their 

help. 

 

REFERENCES 
[1] Y. Shao and S. Wang, “Truncation error analysis  

of a pre-asymptotic higher-order finite difference 

scheme for Maxwell's equations,” ACES Journal, 

vol. 30, no. 2, 2015. 

[2] B. Mukherjee, “Numerical solution in FDTD   

for absorbing boundary condition over dielectric 

surfaces,” J. Adv. Res. Sci. Comput., IASR 4.1: 13-

23, 2012. 

[3] B. Mukherjee and D. K. Vishwakarma, “Application 

of finite difference time domain to calculate the 

transmission coefficient of an electromagnetic 

wave impinging perpendicularly on a dielectric 

interface with modified MUR-I ABC,” Defence 

Science Journal, vol. 62.4, pp. 228-235, 2012. 

[4] Y. Ji and X. Zhao, “Reduction of electromagnetic 

reflections in 3D airborne transient electromagnetic 

modeling: Application of the CFS-PML in source-

free media,” International Journal of Antennas and 

Propagation, 2018. 

[5] M. E. Everett, “Transient electromagnetic response 

of a loop source over a rough geological medium,” 

Geophysical Journal International, vol. 177, pp. 

421-429, May 2009. 

[6] C. J. Weiss and M. E. Everett. “Anomalous 

diffusion of electromagnetic eddy currents in 

geological formations,” Journal of Geophysical 

Research, vol. 112, B08102, 2007. 

[7] A. Guellab and W. Qun, “High-order staggered 

finite difference time domain method for dispersive 

Debye medium,” ACES Journal, vol. 33, no. 4, 

2018. 

[8] G. Gao, H. Sun, and Z. Sun, “Stability and 

convergence of finite difference schemes for a class 

of time-fractional sub-diffusion equations based on 

certain super convergence,” Journal of Computa-

tional Physics, vol. 280, pp. 510-528, 2015. 

[9] J. Ge, M. E. Everett, and C. J. Weiss, “Fractional 

diffusion analysis of the electromagnetic field in 

fractured media-Part I: 2D approach,” Geophysics, 

vol. 77, no.4, pp.213-218, 2012. 

[10] J. Ge, M. E. Everett, and C. J. Weiss, “Fractional 

diffusion analysis of the electromagnetic field in 

fractured media-Part 2: 3D approach,” Geophysics, 

vol. 80, no. 3, pp. 175-185, 2015. 

[11] A. A. Alikhanov, “A new difference scheme for  

the time fractional diffusion equation,” Journal of 

Computational Physics, vol. 280, pp. 424-438, 

2015. 

[12] M. Dehghan, M. Safarpoor, and M. Abbaszadeh, 

“Two high-order numerical algorithms for solving 

the multi-term time fractional diffusion-wave 

equations,” Journal of Computational and Applied  

ZHAO, JIANG, JI: FRACTIONAL MODELING OF ELECTROMAGNETIC SUB-DIFFUSION 1018



Mathematics, vol. 290, pp. 174-195, 2015. 

[13] X. Zhao, Z. Sun, and G. E. Karniadakis, “Second-

order approximations for variable order fractional 

derivatives: Algorithms and applications,” J. 

Computat. Phys., vol. 293, pp. 184-200, 2015. 

[14] M. Dong, A. Zhang, J. Chen, S. Zhang, and Y. He, 

“The fourth-order one-step leapfrog HIE-FDTD 

method,” ACES Journal, vol. 31, no. 12, 2016. 

[15] T. Wang, “FDTD simulation of EM wave propa-

gation in 3-D media,” Geophysics, vol. 61, no. 1, 

pp. 110-120, 1996.  

[16] T. Wang and G. W. Hohmann, “A finite-difference, 

time-domain solution for 3-dimensional electro-

magnetic modeling,” Geophysics, vol. 58, no. 6, pp. 

797-809, 1993. 

[17] K. S. Yee, “Numerical solution of initial boundary 

value problems involving Maxwell's equations in 

isotropic media,” IEEE Transactions on Antennas 

& Propagation, vol. 14, no. 3, pp. 302-307, 1966. 

[18] D. Guptasarma, “Computation of the time-domain 

response of a polarizable ground,” Geophysics, vol. 

47, no. 11, pp. 1574-1576, 1982.

 

 

ACES JOURNAL, Vol. 34, No. 7, July 20191019


	80875 CSM ACES_JULY 2019 ALL ARTICLES_PROOF2.pdf
	Article 2
	Article 3
	Article 4
	Article 5
	Article 6
	Article 7
	Article 8
	Article 9
	Article 10
	Article 11
	Article 12
	Article 13
	Article 14
	I. INTRODUCTION
	II. THEORETICAL MODEL
	page 4 and.pdf
	IV. PARAMETERS OF THE DIAMOND DETECTOR

	page 9 and 10.pdf
	VI. SUMMARY AND CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

	ACES_Journal_20181248_ML_.pdf
	V. CALCULATION RESULTS AND DISCUSSION

	ACES_Journal_20181248_ML_.pdf
	III. NUMERICAL METHOD


	Article 15
	Article 16




