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Abstract ─ This paper describes a fractional 
boundary placement model for the transmission-
line modeling method enabling the positioning of 
internal boundaries at non-integer cell locations.  
The model does not introduce any restriction on 
the maximum timestep of simulations.  The 
connection of the boundary model to a regular 
mesh is shown and the model is validated using a 
band-pass waveguide filter model.  Results show 
good agreement with the analytical solution for the 
waveguide problem. 
  
Index Terms ─ Full-field electromagnetic 
modeling, time domain analysis, transmission-line 
matrix methods, waveguide.  
 

I. INTRODUCTION 
In its simplest form, the transmission-line 

modeling method, or matrix method, (TLM) 
requires space to be discretized into uniform cells 
of equal size [1].  The most commonly used TLM 
cell in three dimensions (3D) is the symmetrically 
condensed node (SCN), a twelve port 
transmission-line junction which models both 
electric and magnetic field components at the node 
centre.  The modeling approach applies the 
equivalence of Maxwell’s curl equations to the 
telegrapher’s equations where 

 , .V IE H
l l

= − = −
∆ ∆

 (1) 

Space is discretized using such nodes, which 
are then solved in an explicit manner through a 
two stage scatter-connect approach.  Therefore, the 
timestep of the simulation is chosen to maintain 
synchronization throughout the mesh and is 

determined by the smallest cell size. Unlike some 
other numerical techniques, the TLM algorithm 
does not involve any convergence criteria, a 
property that makes it an inherently stable method 
[2]. 

In an uniform SCN mesh all cells are the same 
size but graded mesh formulations do exist and 
offer geometrical flexibility [1].  The grading of 
the mesh determines the smallest cell size and 
hence the timestep that must be used in the 
simulation.  Typically, the smaller the cell size the 
smaller the timestep must be. 

Perfect electric conductor (PEC) boundaries in 
the standard TLM method are usually realized by 
positioning them at cell faces.  Hence, boundaries 
must be positioned at mesh lines within the model.  
The PEC boundary condition is applied in the 
connection stage by setting the reflected voltage, 
from the boundary, to be the negative of the 
incident voltage. 

To accurately model geometry, it is often 
necessary to arbitrarily position object boundaries 
within the mesh.  The structured mesh may not 
offer enough flexibility to conform to the model 
geometry and a higher mesh density or a graded 
mesh must be used.  In both cases, the simulation 
timestep must be reduced, increasing the total 
CPU time for the problem.  To maintain 
synchronization and stability, the maximum time 
step that can be used in the standard 3D TLM 
method is 

 min
max 2

lt
c

∆
∆ = , (2) 

where Δlmin is the smallest cell edge length in the 
mesh. 

776

1054-4887 © 2011 ACES

ACES JOURNAL, VOL. 26, NO. 9, SEPTEMBER 2011

Submitted On: May 31, 2011
Accepted  On: September 12, 2011



A fractional external boundary placement 
model was developed in [3] where space between 
an arbitrarily positioned boundary and a structured 
mesh is modeled by a transmission-line parallel to 
the boundary.  This approach allows the 
boundaries around cavity type problems to be 
positioned anywhere within a cell without limiting 
the timestep used.  Here, external refers to the 
modeling domain, which is the boundary where 
the modeling space is truncated. 

In order to model a general problem where 
structure is contained within the body of the mesh, 
for example a waveguide aperture problem or 
large scale EMC type problem, internal boundaries 
must be modeled.  This requires the correct 
treatment of fields on both sides of the boundary 
and along the laminae edge of the boundary, such 
as around an aperture.  

This paper extends the model in [3] to internal 
boundaries so that objects within the modeling 
domain can be positioned in an arbitrary manner 
without modifying the structure of the rest of the 
mesh.  This is done without introducing restriction 
upon the simulation timestep. 
 

II. TWO DIMENSIONAL 
FORMULATION 

The boundary model is developed initially in 
two dimensions (2D) in order to reduce the 
complexity of the formulation.  Extension to three 
dimensions is straightforward and is described in 
Section III.  In 2D, the model will be derived to be 
coupled to the 2D TLM series node [1].   The 
series node is formed from four transmission-lines 
connected at a junction in a series manner. 

The aim is to replace the 2D series node by a 
structure that models the field propagation due to a 
boundary positioned within the cell.  The 2D 
series node is therefore replaced by the 
construction shown in Fig. 1 where, in this case, 
the boundary is positioned along the x-axis.  A 
single boundary cell is present in the mesh and the 
connecting transmission-lines of the adjacent cell 
can be seen.  Although the 2D node only has four 
ports, the port numberings are chosen to be 
consistent with the 3D SCN. 

The boundary model is a time-domain 
implementation of the circuit shown in Fig. 1 
which is a 1D transmission-line segment running 
parallel to the boundary.  The boundary properties 
will be modeled by the inductance and capacitance 

of the transmission-lines.  Coupling of the 
boundary model to the 2D series nodes is 
performed through the voltage sources on the 
transmission-lines and coupling to the boundary 
end through a potential divider. 

Here, only cases where the skin depth is small 
compared to the boundary thickness are 
considered.  Hence, it is assumed that there is no 
propagation across the boundary and it is a perfect 
electric conductor (PEC). 

 

 
Fig. 1. 2D internal fractional boundary cell - port 
numbering is consistent with the 3D symmetrically 
condensed node (SCN). 

 
A. Boundary properties 

The two regions of space on either side of the 
boundary are designated the subscripts n and p, that 
is the region which has its normal facing negatively 
and positively with respect to the coordinate 
system. 

The thickness of the boundary is given by h and 
the displacement of the boundary from the cell face 
is given by d so that 

  ,p nd d h l+ + = ∆  (3) 
where Δl is the cell spacing.  Therefore, for a 
laminae boundary, the value of h is zero and for a 
real boundary with thickness the value of h is in the 
range 0 < h < Δl.  In order to model a boundary 
with thickness greater than Δl, the modeller must 
construct the boundary in more than a single plane 
of cells, in the same manner as would usually be 
applied in these cases. 
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The formulation proceeds from the one 
dimensional telegrapher’s equations where, for the 
positive side of the boundary; 

 1,
bp bxp

p

V I
l L V

x t
∂ ∂

−∆ = −
∂ ∂

 (4) 

 .bxp bp
p

I V
l C

x t
∂ ∂

−∆ =
∂ ∂

 (5) 

The per-unit-length capacitance and inductance 
and characteristic impedance are determined by the 
volume of space adjacent to the boundary.  The 
capacitance and inductance not modeled by the 
transmission-lines themselves will be modeled by 
the transmission-line stubs [1].  The per-unit-length 
capacitance and inductance and characteristic 
impedance that are to be modeled by the boundary 
model are 

 0 ,p
p

lCC
l d

ε ∆
= =

∆
 (6) 

 0 p
p

dLL
l l

µ
= =

∆ ∆
 (7) 

and 

 0/ .p
bp p p

d
Z L C

l
η

 
= =  ∆ 

 (8) 

Converting equations (4) and (5) to travelling 
wave format [3, 4] yields the boundary voltage and 
current expressions 

 
( )10 11 ,

2

i i i
b p b p bCp

bp

V V V
V

+ +
=  (9) 

 
( )1

10 11 12 .
2

i i i
b p b p bLpx

bxp
bp

V V V V
I

Z

− − +
=  (10) 

In (10), the voltage coupled from the bulk mesh 
is given by 

 1 02 ,r
bxp TLV V I Z= −  (11) 

where V0
r is the reflected port voltage on the series 

node coupling to the boundary model. 
The stub impedances are expressed here in 

terms of Zbp and have been obtained in the same 
manner as in [3] where speed of light propagation 
along the transmission-line is required.  This 
requires the introduction of the stubs to model 
additional capacitance and inductance within the 
boundary model.  These expressions define the 
TLM equivalent circuit of the boundary model 

which is shown in Fig. 2 for both sides of the 
boundary. 

 

 
Fig. 2. Thevenin equivalent circuit of the 2D 
internal fractional boundary model - port 
numbering is consistent with the 3D symmetrically 
condensed node (SCN). 

 
B. Boundary update 

The boundary model is updated during the 
connection stage of the TLM algorithm.  Therefore, 
the boundary model uses the reflected voltage from 
the adjoining cell as its inputs.  Following scattering 
throughout the mesh, the voltage and current in the 
boundary cells are calculated using equations (9) 
and (10).  The boundary scatter then proceeds by 
calculating the voltages reflected along the 
boundary length given by 

 10 10
r i

b p bp bxp bp b pV V I Z V= − −  (12) 
and 

 11 11 .r i
b p bp bxp bp b pV V I Z V= + −  (13) 

The stub voltages are updated for the next 
timestep in the usual way so that for the inductive 
stub 

 ( )( )1 2 2 1i i
k bLpx k bLpx bxp bpV V I Z+ = − + −  (14) 

and for the capacitive stub 
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 1 .i i
k bCp bp k bCpV V V+ = −  (15) 

These expressions complete the update of 
voltages within the boundary model. Connection 
must also be made to the nodes of the bulk mesh 
adjacent to the boundary nodes, which is described 
in the following subsection. 

 
C. Boundary connection 

Three types of connection must take place in 
the boundary model: connection along the 
boundary, connection to the mesh normal to the 
boundary, and connection to the mesh at the ends of 
the boundary. 

Connection along the length of the boundary is 
performed by calculating the total voltage at the 
connecting ports.  Connection of the nth boundary 
node to the (n+1)th boundary node would yield a 
total voltage of 

 

(
)

( )

11,10 11

10

2 ( ) ( 1)

2 ( 1) ( ) /

( ) ( 1)

r
b p k b p bp

r
k b p bp

bp bp

V V n Z n

V n Z n

Z n Z n

= + +

+

+ +

 (16) 

and hence, the incident voltages at the next timestep 
are given by 

 1 11 11,10 11( ) ( )i r
k b p b p k b pV n V V n+ = −  (17) 

and 
 1 10 11,10 10( 1) ( 1).i r

k b p b p k b pV n V V n+ + = − +  (18) 
This connection procedure allows the boundary 
displacement or thickness to vary between 
boundary cells and ensures conservation of energy 
as a result of these variations. 

Connection to the bulk mesh normal to 
boundary is simply carried out through the voltage 
source on the boundary transmission-line.  The 
mesh is updated using the expression 

 1 0 0 .i r
k k k bxp TLV V I Z+ = −  (19) 

Finally, connection to the edge of the boundary 
is performed by calculating the loop current at the 
boundary end given by 

  
( )10 10 11

10,11

2 2
,

r r r
k b p k b n k

k b
TL bp bn

V V V
I

Z Z Z
− + +

=
+ +

 (20) 

where kIb10,11 denotes the current loop due to the 
boundary ports 10p and 10n and the regular TLM 
port 11. The reflected port currents are then given 
by 

 1 11 11 10,11 ,i r
k k k b TLV V I Z+ = −  (21) 

 1 10 10 10,11
i r

k b p k b p k b bpV V I Z+ = + , (22) 
and 

 1 10 10 10,11 .i r
k b n k b n k b bnV V I Z+ = +  (23) 

These expressions form a potential divider 
circuit at the boundary edge to ensure that the 
incident field is split between either side of the 
boundary in the correct manner.  These expressions 
complete the boundary to bulk mesh updates and 
provide the incident voltages for the next iteration 
of the model. 

 
III. EXTENSION TO THREE 

DIMENSIONS 
The internal boundary model has been defined 

in 2D based on the series TLM node. Extension to 
three dimensions (3D) is realised by modeling the 
boundary as a 2D shunt grid adjacent to the 
boundary, rather than the 1D line used for the 2D 
model. 

Following the same procedure as in 2D and 
starting from the telegrapher’s equations for the 2D 
shunt grid: 

 1,
bp bxp

p

V I
l L V

x t
∂ ∂

−∆ = −
∂ ∂

 (24) 

 7 ,bp byp
p

V I
l L V

y t
∂ ∂

−∆ = −
∂ ∂

 (25) 

and 

 ,bxp byp bp
p

I I V
l l C

x y t
∂ ∂ ∂

−∆ − ∆ =
∂ ∂ ∂

 (26) 

yields the circuit equivalent equations that are to be 
solved.  The boundary impedance remains the same 
as in 2D and is given by (8) and the update 
equations are given 

 
( )8 9 10 11 ,

4

i i i i
b p b p b p b p

bp

V V V V
V

+ + +
=  (27) 

 
( )1

10 11 12

4

i i i
b p b p bLpx

bxp
bp

V V V V
I

Z
− − +

= , (28) 

and 

 
( )1

8 9 72 .
4

i i i
b p b p bLpy

byp
bp

V V V V
I

Z
− − +

=  (29) 

In the 3D case, there is no capacitive stub as all the 
required capacitance is modeled by the link lines.  
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The link line voltages are scattered in the same 
manner as in (12) and (13) and the stub voltage is 
updated as in (14), where in this case the inductive 
stub impedance is simply 2Zbp.   

 
A. Boundary connection 

The boundary connection in 3D is performed in 
the same manner as in 2D.  At each connecting port, 
the total field is calculated and the reflected field is 
then obtained and is dependent on the displacement 
and thickness of the boundary.  When connecting 
the boundary edge to the 3D SCN, the coupling 
requires treatment of the voltage port that does not 
have a corresponding boundary port, such as port 
V5 as shown in Fig. 3. 

 

 
Fig. 3. Port numberings of the 3D boundary model 
(right) and a connecting adjacent SCN (left) 
showing the unmatched SCN port (V5). 

 
Connection of the other port, normal to the 

boundary, is performed in the same way as in 2D. 
The total field is calculated and the reflected 
voltages are then obtained. In the case of a 
boundary in the x-y plane as shown in Fig. 3, the 
electric field polarised normal to the boundary is 
assumed to be continuous at the boundary edge, 
permitting direct connection between the two 
regions.  The unmatched port of the SCN (V5) is 
polarised in the plane of the boundary however.  

The boundary displacement must be less than 
the cell it is within, hence less than Δl. Furthermore, 
as a rule of thumb, the mesh cell size, Δl, should be 
smaller than one-tenth of the wavelength of interest 
to provide suitable accuracy and reduce dispersion 
[1].  Hence, it is assumed that the field polarised in 
the plane of the boundary in the region adjacent to 
the boundary is zero.  This component is not 
modeled by the boundary model, and furthermore, 
this assumption implies that the field polarised 
parallel to and incident upon the edge to the 

boundary plate sees a PEC boundary condition.  
Hence, this port of the SCN is updated through 

 1 5 5 ,i r
k kV V+ = −  (30) 

in the same manner as the PEC boundary 
condition is usually applied to the SCN cell. 

 
IV. COMPUTATIONAL 

PERFORMANCE 
The computational performance of this 

numerical method is assessed with respect to the 
scattering process within a free-space series node in 
2D and the free-space SCN node in 3D.  The 
rationale for this is that the internal boundary model 
described here replaces the whole TLM cell and, 
although solved during the connection process, the 
update of the internal boundary cell can be 
considered an equivalent scattering process for the 
cell. 

The computational requirements of the 
boundary model with the normalised free-space 
TLM cell are compared for 2D in Table 1 and in 3D 
in Table 2, where for the free-space cells the circuit 
based algorithm described in [4] is used.  

 
Table 1: Comparison of the computational 
requirements of the free-space series node and the 
internal boundary node in 2D   

 Free-space Boundary 
Variables 4 12 
Calculations 7 14 

 
Table 2: Comparison of the computational 
requirements of the free-space SCN and the 
internal boundary node in 3D   

 Free-space Boundary 
Variables 12 18 
Calculations 18 22 

 
An expected increase in variables and 

computations can be seen for the boundary cells.  
However, it is not expected that this increase will 
affect the computational performance of the full 
TLM model greatly as the number of boundary 
cells would be only a small fraction of the total cells 
in the simulation model.  

 The most significant computational advantage 
of this procedure is that no modification of the 
simulation timestep is required to accommodate the 
boundary displacement.  The transmission-line 
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impedances are determined by the offset of the 
boundary from the cell edges as in (8).  It can be 
seen that all transmission-line impedances for the 
link lines and stubs are positive for all positive 
displacements.  Hence, there is no restriction to the 
simulation timestep necessary to maintain stability 
of the model as is required in a graded approach.  
Even as the boundary displacement tends to zero 
the simulation timestep can still be maintained at 
the maximum of the bulk mesh. Hence, any value 
of h in the limit 0 < h < ∆l and d in the limit 0 < d < 
∆l can be used providing (3) is satisfied without a 
reduction in timestep. 

Furthermore, as the timestep is not affected by 
the introduction of the boundary model it is not 
necessary to load the bulk mesh with stubs to adjust 
its timestep, as required in a graded mesh.  
Therefore, this model avoids the unwanted 
dispersion effects of the stub loaded TLM mesh [1] 
giving improved model accuracy over graded 
approaches.   
 

 V. VALIDATION 
Validation of the boundary model addresses the 

two parts of the algorithm: the displacement of the 
boundary within the cell and the connection of the 
boundary to the surrounding mesh. 

Regarding the displacement of the boundary, 
the accuracy of the external boundary model is 
determined in detail in [3] it is shown that the 
propagation velocity and boundary displacement 
have errors of only 0.00003% and 0.01%, 
respectively.  The displacement model used here is 
based on the same procedure as that in [3], therefore 
the errors in the propagation velocity and boundary 
displacement will be identical to that of the external 
boundary. 

To validate the model in this paper, it must be 
ensured that the procedure used to couple the ends 
of the boundary to the regular mesh is valid and that 
the displacement model functions correctly on both 
sides of the boundary.  The validation is performed 
using a waveguide band-pass filter model in the 
following subsection. 
 
A. Waveguide band-pass filter 

The boundary model developed here takes into 
account two modes of connection to the bulk mesh, 
that is perpendicular and normal to the boundary. 
Here, this model is validated using a case requiring 

use of both the displacement and connection of the 
boundary model. 

A waveguide filter within a WR-28 (fc = 
31GHz) waveguide is chosen consisting of four 
inductive apertures with periodic separation.  A 
schematic of the structure is shown in Fig. 4. where 
the H10 (TE10) mode is excited so that the electric 
field is orientated vertically in the waveguide. 

 

 
Fig. 4. Waveguide band-pass filter with the 
apertures modeled using the boundary model. 
 

  The admittance of each of the inductive 
apertures is given in [5] where 

 ( ) ( )2
0/ / cot / 2 .gY Y j a d aλ π= −  (31) 

In (31) λg is the guide wavelength, Y0 is the 
admittance of the waveguide without the aperture 
and the dimensions are as labeled in Fig. 4.  Hence, 
combining the multiple apertures shown in Fig. 4. 
yields an analytical reflection coefficient of 

 
( )

2

2cosh cos

2cot sin .
2 2

g

g

g

l

d l
a a

π
λ

λ π π
λ

 
Γ =   

 
  +        

 (32)  

In the pass-band |Γ|<1 and the reflection 
coefficient has no real part.  The geometry is 
initially modeled using only the usual TLM 
boundary model where the aperture spacing is 
chosen to be an integer number of cells, so that a = 
7.11mm = 11∆l and the aperture width is d = 
1.94mm = 6∆l.  Using the standard boundary 
model, the aperture spacing was set to l = 20∆l and 
19∆l and the |S21| response of the filter was 
simulated.  The H10 mode was propagated down the 
waveguide and the response was taken with and 
without the filter inserted. 

The internal fractional boundary model was 
then used on the first and third apertures to model a 
separation of 19.5∆l, i.e. with a boundary 

d 

l a 

Fractional 
boundaries 

a = 7.11mm = 11∆l 
d = 1.94mm = 6∆l 
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displacement of 0.5∆l.  The boundary developed 
here allows this case to be modeled without any 
change to the mesh spacing or the simulation 
timestep.  The response of the three aperture 
placements are shown in Fig. 5. 
 

 
Fig. 5. |S21| response of the waveguide filter using 
three different aperture separations and the 
corresponding analytical solutions (vertical lines). 
 

The pass-band of the waveguide filter can be 
easily identified in each case and the spacing of the 
apertures can be seen to adjust the centre frequency 
of the filter.  The boundary model has been used to 
model the intermediate aperture spacing.  The result 
shows that the model has allowed modeling of this 
intermediate case as the pass-band can be seen to be 
directly between the two extreme cases. 

There is excellent agreement with the analytical 
solution calculated using (32) for the centre 
frequency of the filter, where the analytical results 
are shown by the vertical dotted lines terminated by 
small circles in Fig. 5.  It was possible to obtain this 
numerical result without any modification of the 
rest of the mesh or any adjustment of the simulation 
timestep.  This makes the model very suitable for 
optimisation problems where it may be necessary to 
modify the position of structures by small amounts 
between simulations. 

 
VI. CONCLUSION 

An internal boundary model for the TLM 
method has been developed allowing unrestricted 

boundary placement with no deleterious effect on 
the timestep.  This model allows PEC structures to 
be positioned anywhere within a structured TLM 
mesh without the need for a graded mesh 
approach.  This offers significant advantages in 
computational runtimes and modeling accuracy. 

Coupling of the boundary to the bulk mesh has 
been discussed for connection both perpendicular 
and parallel to the boundary.  Validation using a 
band-pass waveguide filter shows that the model 
allows the filter apertures to be arbitrarily and 
accurately positioned. The results agree well with 
the analytical centre frequencies of the band-pass 
models.   
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