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ABSTRACY

The method of moments reduces to the boundary-residual method or the
point-matching method with a suitable weighting function. This paper shows
another means by which these three methods c¢an preduce equivalent
results. Arguments are given as to why point matching can fail to con-
verge, while the other two metheds rigorously converge. An example 1is
given to support these arguments.

EQUIVALENCE CGF METHODS

The method of moments [1], the boundary-residual method [2, 3], and
the point-matching method [4] are three seemingly different methods for
field computation. Harrington [1] has shown, however, how the method of
moments encompasses the other two methods through the proper selection of
weighting functions. Another means exists by which all three methods can
become computationally equivalent,

Consider the problem posed from the perspective of the methcd of
moments [1]. A deterministic equation such as

L} a, f.(3) = g(s) (1)
i

is to be sclved over some range s. The equation, as it applies to electro-
magnetics, may satisfy the boundary conditions of a particular problem,
e¢.g., the continuity of the tangential fields across the boundary. The
summation then represents the field within a region, and the operator L
produces the tangential fields at the boundary s. g(s) is the value of the
tangential fields from, say, the known incident field. A weighting func-
tion wi can be multiplied on both sides of Eq. 1 and integrated over the
boundary s to produce a matrix equation:

=

[o
]

o4

(2)
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with

Moo= wo(s)Lr.(s) ds (3)
ij s 1 J

g = js Wi(s) g(s) ds {4

The boundary-residual method can be derived from these equations by
setting the weighting functions equal to

f (5)
W (s) = (L fi(s)J 5

where * denotes the conjugate operator. The truth of this assertion can be
shown by defining the residual aleng the boundary,

R(s) = L } a fi(s) - gl(s) (6)
i

and minimizing the integral of the residual magnitude over the boundary in
the least-squares sense. The minimization is with respect to each of the
unknown coefficients @,

_§¥ J |R(s)|2 ds = 0 = —=¢ ¥ a:aj J (L fi(s))* L fj(s) ds

Bai s da, {1, S

-2re J ooy | (Le (s))" s(s) ds + [ & (s) a(s) as
i S S

. *
B % a js (Le () L £,(s) ds

-2 J (L fi(s)]* g(s) ds (1)
s

which implies Eg. 5. For point matching, the weighting function is a delta
function given by

W (s) = s(s - st (8)
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s0 that Eq. 3 becomes

il

I s(s - Sj) L fj(s) ds

ij s

L fj[si) (9)

where 8 is a sample point along the boundary.

Now consider the practical implementation of Eqs. 2-4, The integrals
are usually evaluated numerically so that Eqs. 3 and 4 become sums:

mn
Mgt % qui[spJ L fj{spJ (10)
p=1
) (s} &ls.)
g, = q_ W.is_} gis (11)
i, P itp p

where q. are the weights of a Gaussian quadrature Iintegration method [5].
m is the number of points of the integration method. Assume that the
number of functions fi in Eq. 1 ranges from 1 ... n. The matrix equation
to solve becomes

M ]

pzl qul(sp]Lfl[spJ .o g qw (s JLfn(sp) g

(12)

It can be verified through direct matrix multiplication that Eq. 12
is equivalent Lo

(13)

£
gl
=R
W
Lol
Cib

where t denctes the matrix transpose and
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Q - : : : (14)
ya, wls ) e la Wn[st_
[— hn
9y Lfl(le (RN q Lfn[sl]
P - : : : (15)

q Lf (s ) =+ Ja Lf (s )

G = . (16)

[, &lsy)

The number of rows of the matrix 6 is m, whereas the number of
columns is n. If m is set equal to n, then the matrices in Egq. 13 become
square; the problem then becomes equivalent to

= >
Pa=2¢C (17)

This equation is equivalent to the point-matching method applied to Eq. 1
in which the number of functions ., equals the number of boundary-sampling
points. Because this solution no longer depends on the form of the weight-
ing function, it is also equivalent to the boundary residual solution.
Now, the boundary-residual method [2, 3] and the method of moments [1] are
rigorously convergent, whereas point matching has been shown to fail to
converge to the proper solution [6] in some cases. The discrepancy lies in
the discretization inherent in the numerical integration routine used to
compute Egs. 3 and 4. By using toc few integration points, to where the
number of integration sample points (m) equals the number of fitting func-
tions (n), the method of moments degrades to point matching. This conclu-
3ion was also reached by Djordjevie and Sarkar [15] although they do not
discuss the failure of point matching as in the next two sections.
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THE FAILURE OF POINT MATCHING WITH FUNCTIONS
OF UNBOUNDED VARIATION

Why does point matching fail? Return to the first operation imposed
by the method of moments on kgq. 1, i.e., integrating with respect to a
weighting function:

js W (s) g a, L £ (s) as = js W (o) g(o) ds i=1, «eo,n (18)

It is assumed that the integral and the summation may be interchanged in
order to create Eq. 2. Titchmarsh [7] proves that an infinite series may
be multiplied by a function of bounded variation and integrated term by
term. This theorem applies even when the series diverges. Now, the
welghting function of the boundary residual methed (Egq. 5) is such a func-
ftion of bounded variation, and so the resulting equations created are
valid. The point-matching method uses a delta function as a weighting
function {(Eg. 8), which is not of bounded variation; bringing the integral
inside the summation is not proven to be valid unless the series is uni-
formly convergent [8], and thus the resulting point-matching eguations may
or may not be valid., What can be said is that when the series in Eq. 18
satisfies the Rayleigh hypothesis [9], the series converges uniformly [9],
and point matching is valid. This view is consistent with Lewin [10].

THE FAILURE OF POINT MATCHING BY REPEATED LIMITS

This paper shows that point matching, and indeed the method of
moments and the boundary-residual method, may fail for another reason.
Consider the numerical form of Egq. 18:

m

l q

(s ) E aiLfi[s ) = % aw. (s ) gls ) i=1, ..., n (19
p=1 i-1 -1

W,
pJ P 1% D pPJ P p

The matrix form of Eq. 12 implies that

m n n m
Lim )} qW.,(s ) Lim } uiLfi(s ) = Lim ) @, Lim )} qW.,(s )Lfi[s )
mse p=1 © nre i=1 P* pew =1 omow p=1 P P
(20)
in order for proper convergence to hoid. If the number of integration

points (m) is large enough, the series form of Egq. 19 will closely approxi-
mate the integral form (Eg. 18), and the interchange of series limits
should remain valid, Point-matching forces m = n, and for it to be valid,
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the simultaneous double limit (m, n » =) must be a valid operation. This
validity does not, in general, held, as shown by @ simple example discussed
by Carslaw [11]:

N

s (x) = ) f (x) (21)
N p-1 p
where
1 1
) = =TT T 71 (22)
1
bN(X) =1 = m (23
From Eq. 22, at x = 0,
f {0) =0 24
p() (24)
Thus,
Lim (s,(C)} = s (0} =0 {25)
N o
N+w
From Eq. 23, for x > 0,
Lim (s (x)) = s, (x) =1 x>0 (26)

N>
Thus, the infinite series sm(x) has a discontinuity at x = 0, It is
interesting to note that the partial sum defined by Eq. 21 is a sum of
continuous functions, and tnis is also continuous. The limiting sum S_ is
not continuous, however, and it is this difference that can cause problems
with taking repeated limits.
Consider the limit,
Lim Lim (s (x)) = & (27)
N
N+= x-=0

Let
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¢
X =5 (28)
where ¢ 15 any positive constant. As N approaches infinity, x will
approach zero, and it seems reasonable that
- C
A =Lim s = (29)
n N
N->x
From Eq. 23,
1
= - 0
A=1- o073 (30)

Now, for any ¢ > 0, A carn be forced to take on any value between 0 and 1
through the proper choice of the constant c¢. Thus, the substitution given
by Eg. 28 is invalid. It is improper to take a repeated limit of a series
in this manner.

It is also improper to exchange the order of the limits in Eq. 27
for, in one case, A =1, and in the other, A = 0, sc that

Lim Lim (sN{x)] # Lim Lim (sN(x)J (31)
N-e  x+0 x*() N»w

The failure of Eg. 31 to be valid is due to the nonuniform conver-
gence of the series for x > 0. That the series defined by Egs. 21 and 22
is nonuniformly convergent can be sSeen by considering any X arbitrarily
¢lose to zero. For any arbitrarily small positive number e,

|5,(0) = 5, (x}] =

—‘ <e (32)

it must be true that

(33)

As x approaches zero, N must become large to satisfy Eq. 32. N must not be
dependent on the positicn within the interval for wuniform convergence to
hold.

Again, for point matching, the conclusicn drawn from this discussion

is that point matching is only rigorously valid when the summation in Eq. 1
and FEq. 19 converges unilormly everywhere it is used; satisfaction of the
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Raylieigh hypothesis ensures this condition [%9]. Unfortunately, determining
when a boundary satisfies the Rayleigh hypothesis 1is not always simple;
even a boundary that satisfies the hypothesis can fail through a simple
coordinate transformation [10]. Bates [9] suggests using conformal trans-
formations to determine if a boundary satisfies the Rayleigh hypothesis,
but this method weakens the main advantage of point matching; i.e., namely
Simplicity.

Moreover, the implication for the method of moments and the boundary-
residual method is that the number of integration points (m) must be much
larger than the number of functions fi(n). Somewhere between this condi-
tion (m >> n) and that of point matching (m = n), both of these methods may
fail. Indeed, this view is borne out by results found from Ikuno and
Yasuura [6] in which their "improved point-matching method" converges for m
> 2n, but fails otherwise.

As a final heuristic argument explaining the failure of point match-
ing, consider a "function fitting" view of this method in which a set of
functions (Lf, in Eq. l] is used to fit a driving function (g in Eg. 1)
over an inter¥al {the boundary s):

n
.E o, hy(s) = g(s) (34)
i=1

where h; (s} = L f;(s). Point matching forces this equation to be true on a
discrete set of n points along s. In between these points, however, the
functions h,; are unconstrained and can take on any value. The measure of
the residual of the problem (i.e., how well the fitting functions fit the
driving function) is over a discrete set of points of g(s), and it is
therefore over a set of measure zero on g(s). An infinite number of func-
tions can be found which equal g(s) on a set of measure zero and produce
the same point matched solution, even as the number of fitting points (n in
Eq. 1) approaches infinity [2]! The method of moments and the bhoundary-
residual method do not fail because the fitting functions are smoothed
everywhere along the boundary by the integral in Egs. 3 and 4. The
residual is not over a set of measure zero, and the fitting functions
converge in the mean to the proper value [7].

An example will illustrate this view. Consider a set of odd poly-
nomials used to represent sin (2mx) over the interval 0 < x < 1:

2™ L sin (2mx) 0<x <1 (35)

i ~1=

an[znx
n=0

Figures 1-3 compare the errors of this fit for the case of point matching
versus the boundary=-residual method. The plots clearly show how the
boundary-residual method smooths the error across the entire interval. The
error of the point-matching method varies wildly between fitting points,
even as the number of fitting functions (N in Eq. 35) increases.
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Fig. 1. The errors of Eg. 35 corresponding to the point-matching case
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Fig. 2. A compariscn of the errors between the point-matched {a) and

the boundary-residual solutions (b) for 8 series terms.
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Fig. 3. A comparison of the errors between the point-matched (a) and
the boundary-residual solutions (b) for 16 series terms.

A REFORMULATION OF POINT MATCHING

Bunch and Grow [12] have proposed a method of using the boundary-
residual method which retains most of the simplicity of point matching, but
wnich is rigorously convergent. Recall that in the boundary-residual case,
the welighting functions are given by Eq. 5. Using these in Eq. 13 procduces

(363

il
Gl
(=4
i
arlll
o

where Tt denotes the complex conjugate ftranspose, and P is given by Eq.
14. Numerically, this equation is equivalent to solving the equation,

{37

ol
[= 3
"

(2

in the least-squares sense [12]. Remember, m > n in Eq. 37, and so there
are more rows than columns. Rather than calculating the matrix product in
Eq. 36, however, bkg. 37 can be solved directly and equivalently using
Householder transforms [12, 13] or using a singular value decomposition
[12, 13]. This method retains the advantages of point matehing in which a
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Wwave expansion is set up as in Eq. 1 and forced to satisfy the boundary
conditions, yet it retains the convergent properties of the boundary-
residual method [2, 3]. The method is rigorously convergent because the
boundary-residual method (Eg. 36) is rigorously convergent [2, 3], and it
creates an identical numerical solution [12, 13] without having to form the
matrix product. It is similar te the method proposed by Ikuno and Yasuura
[6], except the connection to the method of moments and the boundary-
residual method have been clearly shown.

The direct formulation of Eg. 37 also has the advantages of being
more numerically stable and quicker to solve than Eq. 36 [12, 13]. The
ggagility problems occur when one or more gigenvalues of the matrix product
P P are close to zero, in which case P P is nearly singular. It is easy
to show that the eigenvalues of the producgzﬁ P are the square of the

singular values of the matrix P. The matrix P can be decomposed into its
singular values,

(38)

ol
]

<
all
[ad ]

where ¢ is a diagonal matrix ,of singular values; V and § are orthogonal
ngl malrix .ol @ S =4

matrices in which V_.V =1 (U' 0 =1I), where I is the identity matrix.

Forming the product P P,

]

il
I

N
=l
all
e}
| S—)

4
——
<
ali
il
pS—)

(39

li
il
—
(=]
~r
[y ]

Thus, if the matrix P has a singular value ¢ closg to zero, the
matrix product P P will have a corresponding eigenvalue ¢ even closer to
Zero. The equation defined by Eg. 36 will thus be more unstable numer-
ically than Eq. 37. Further, solving Eq. 37 directly using a singular
value decomposition has the added advantage that the singular values caus-
ing numerical instabilities may be discarded in computing the solution

[14].

Solving the direct form of the electromagnhetic problem may have
advantages over using the method of moments. The method of meoments creates
a matrix problem as in Eq. 12. The matrix consists of a sum for each ele-
ment due to the numerical integration of the weighting function. The com-
putation of the element sums can be time consuming as the number of sums
increases as the square of the matrix size. On the other hand, the direct
formulation does not need sums $o be computed, bhut it solves the problem
directly. This advantage in speed, however, may be offset by the need for
extra storage, as the matrix in the direct formulaticn 1is overdetermined
{the number of rows is greater than the number of columns}. JTkuno and
Yagsuura [6] have reported good results in a similar formulation when the
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numbers of rows (corresponding to boundary points) is greater than twice
the number of columns (corresponding to wave expansion functions).

Another consideration is that the singular value decomposition is
well-behaved and well-suited for solving the direct formulation in a least-
squares sense [13]. The singular value decomposition method allows one to
have control over the singular values to produce a well-behaved solution
even with a nearly singular set of equations [14]. This control is advan-
tageous when the formulaticn of the problem procuces a nearly singular set
of equations as when using a large number of wave expansion functions.

The direct method may also be used for solving scattering problems
when the induced current on the scattering surface is expanded as a sum of
unknown basis functions. Butier and Wilton [16] have investigated the
application of the methed of moments as applied to thin-wire scatterers
with several different basis sets to represent the wire current. They
found the convergence of the sclution depended strongly on the basis func-
tions used as well as whether the equations solved were cast in Pocklington
(electric field) or Hallén {magnetic vector potential) integral form.
Their testing functions were delta functions forcing their method of solu-
tion to be that of point matching. As stated, point matching may fail to
converge to the correct soluticn; in this case, point matcehing was satis-
factory because the geometry of the scatterer was simple (the Rayleigh
hypothesis was satisfied) and n¢ singularities in the fields existed on the
scatterer, Using the direct formulation in this case, however, would allow
the technique to be extended to scatterers of more complicated geometry.
The dependence of convergence on the choice of basis functions used to
represent the wire current would still remain, but an advantage of the
direct method is that the singular value decomposition would be ideal for
the problem of ill-conditioned matrices found in some of their test cases.

A SPHERICAL CAVITY EXAMFLE

To 1illustrate the use of Eq. 37, we solved the resonances of the
spherical cavity using cylindrical wave functions. A scalar expansion for
the fields is given by [17]

j2mn

P o= Z a Jg[Y pJ ejg¢ @ b (40)
n

with

2 [2m)°
Y= kS - (——"‘“) (41)
n p

J. 1s the ecylindrical Bessel function of the first kind of order 2
(17], kK is the wave number (w/c¢), and p is the diameter of the cavity.
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This wave expansion is used to create the electric field [17] whose tangen-
tial value is minimized on the spherical boundary.

Figure 4 shows the minimum singular value over the wave number of the
overdetermined matrix using Eg. H40. In this case, we do not have an inci-
dent field and so the right-hand side of Eg. 37 is zeroc, The minimum
singular value of the matrix of Eq. 37 gives an indication of how well the
wave expansion (Eq. 40) fits the boundary conditions over frequency [18].
The dips in the singular value are the resonances of the cavity, and these
gradually approach the exact resonances (shown as dotted lines) as the
number of wave functions (n in Eg. 67) increases. As shown, good results
are obtained using only a few number of wave Cunctions.
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Fig. 4. The minimum singular value over wave number for the
spherical cavity with % = 0, The dotted line shows an
exact resonance., The results are shown for n = 0 (a),
n=-1, «.., 1 (), =2, ..., 2 (), and -3, ..., 3 (d).

CONCLUSIONS

This paper has shown how the method of moments can collapse to the
point-matching method and the beoundary-residual method; it can do s¢ in two
ways. The boundary-residual method has alsc been shown to revert to point
matehing in some cases. 4 large number of sampling points for numerical
integration in either the method of moments or the boundary=-residual method
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can prevent this collapse. The point-matching method 1s unconstrained
between data points; an example has shown that the error of the functions
between these points can fluctuate wildly. Finally, a formulation has been
given which retains the simplicity of point matehing while retaining the
rigorous convergernce properties of the method of moments or the boundary-
residual method.
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