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Abstract − This paper presents a method to analyze the 
reflectometry responses of a branched network of non-
ideal wires. A modified bounce diagram that uses a 
transition matrix to keep track of signal flow is used.  
This approach is further improved by including the 
complex propagation constant to include the frequency 
dependent filtering effect (phase delay and attenuation) of 
the non-ideal transmission lines.   
 

I. INTRODUCTION 
 

Modeling and simulation of transmission lines [1-3] 
has been used to evaluate reflectometry responses or data 
transmission capability for a variety of applications, 
particularly evaluation of large scale integrated circuits. 
With the increasing commercial interest in 
communication over power lines [4], wire health 
monitoring for safety and reliability [5], and multipoint 
communication systems for sensor networks, the ability 
to perform accurate simulation of transmission responses 
on branched networks of wires is very important.  

A number of approaches for simulating individual 
point-to-point transmission lines have been developed. 
Most methods typically rely on the RLGC lumped 
element model, which models the transmission line as a 
set of lumped element circuit parameters. Time [6, 7] and 
frequency domain [8, 9] solutions exist for non-ideal 
transmission lines including the frequency-dependent 
losses of the lines. While single lines are of interest in 
many applications, there are also a number of 
applications including power distribution systems where 
the lines branch one or many times, carrying power to 
multiple locations. Little work has been done on these 
branched networks. A matrix-based method for analyzing 
nonideal networks in the time domain was given in [7]. 
This method works well and could be extended to 
networks of any size, but it quickly becomes cumbersome 
and difficult to program for any but the simplest 
networks. A more scalable method was desired. 

This paper introduces a new approach to simulate 
transmission lines, including easy scalability for branched 
networks for arbitrary time domain input signals injected 
at multiple points throughout the network. By merging 
time domain and frequency domain simulations in a 
method similar to [6], frequency dependent attenuation 
on the lossy lines can be taken into consideration for 

more accurate modeling and simulation. This paper 
describes the ideal and realistic modeling efforts and how 
the signatures compare to measured results. The specific 
application of interest for this paper is the use of 
reflectometry for location of faults on branched networks 
of aircraft wiring; however the approach can be readily 
adapted to other applications.  

We will discuss in section II how the transition 
matrix and state vectors are defined, and present the 
simulation procedure. The simulation result is compared 
with measured data in section III. The lumped-element 
model of the transmission line is the added to the model, 
and the simulated result is compared with measured data 
again in section IV.  

 
II. MATRIX REPRESENTATION OF BRANCHED 

NETWORK 
 

The use of a bounce diagram is a well established 
method for studying and simulating ideal transmission 
lines with impedance discontinuities [10]. The bounce 
diagram is a time domain representation of the reflections 
in a wire as a set of “bounces” that can be added up to 
determine the time domain signatures of the signals 
(reflectometry or communication) on the wire. For 
transmission lines with multiple branches, the traditional 
bounce diagram becomes unpalatably complex. Each 
signal that reaches a branch reflects off the branch and 
transmits into the branch. To keep track of all of the arms 
of the branched network, an individual bounce diagram 
would be needed for each branch, and these separate 
diagrams would need to be coupled at all of the junction 
points. In effect, this is what the method described in this 
paper does. One way to do this is to use a time domain 
modeling method such as the finite difference time 
domain method (FDTD) [11], which models the network 
as an RLGC network, provides special connectivity 
boundary conditions at all of the junctions, and iteratively 
evaluates the time domain fields as they move throughout 
the model. This method works well and provides accurate 
results, however it is not ideal for use in future work that 
uses this “forward” model to analyze measured data and 
produce a “reverse” model of the network that causes 
them. 

In order to provide a simpler method for analysis of 
the reverse method, a matrix-based approach was used to 
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replace the iterative FDTD method. This is done by 
subdividing all of the branches of a network into sections 
of equal length and evaluating the propagation on each 
segment of the network simultaneously. The term “equal 
length” means it takes the signal an equal amount of time, 
T, to travel between adjacent nodes {e.g., xi and xj, or xk 
and xl in Fig. 1} where there is an equal distance of z 
between the adjacent nodes within wire segments. A 
transition matrix A= [auv], where u and v are the column 
and row index, respectively, is used to keep track of the 
signal flows. The entries of the transition matrix indicate 
how much of the signal at a particular node in one instant 
will be redistributed to the other nodes in the following 
time instant. For a network that has minimal 
interconnection as shown in Fig. 1, this matrix will be 
very sparse. A gridded network (which might be used for 
sensor connectivity) would be less sparse. The column 
index is the initiating node, and the row index is the 
receiving nodes.  

 
 
Fig. 1. An example of a simple branched network. 

 
On a transmission line as shown in Fig. 2, the 

reflection coefficient at any location p on the wire is 
given by,  
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and the transmission coefficient is given by, 
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where Vinc is the incident voltage, Vref is the reflected 
voltage, Vtrans is the transmitted voltage, Z0  and Z1 are the 
impedance of the transmission line before and after the 
point p. 

 

 
 

Fig. 2. Illustration of transmission and reflection 
coefficients. 

When the impedances are equal at adjacent notes, 
such as xi and xj shown in Fig. 1, the reflection coefficient 
is 0, and the transmission coefficient is 1. When a 
junction between two wires of equal impedance Z0 is 
encountered, their effective impedance is Z0/2, the 
reflection coefficient is 1/3, and the transmission 
coefficient is 2/3. This means for a network as in Fig. 1, 
we will have aij = 1, akl =2/3, etc.  

At time t, the signal containing the reflections from 
all of the nodes can be presented as a state vector xt where 
the signal at all of the nodes at time t can be found from 
the signal at the previous time t-T,  

 
 −= t t Tx Ax .                                   (3) 

 
This method is iterative from time step to time step, 

and is therefore well suited for evaluation of a 
reflectometry signature, which is normally represented in 
the time domain. The method is simpler and faster than 
the FDTD method, and can be adapted to include the 
effects of frequency dependent attenuation that is present 
on all realistic wiring systems as described in the 
following section. 
 

III. COMPARISON OF SIMULATED AND 
MEASURED DATA 

 
Figure 3 shows a branched network that is simulated 

with this method (ideal case) and compared with its 
measured time domain reflectometry (TDR) signature for 
realistic (slightly lossy, RG58 coax) wire. A TDR 
transmits a fast rise time step function down the wire and 
records its reflections in the time domain. The location 
and change in impedance along the wire are determined 
from the observation of the delay and the magnitude of 
the reflection. 

 

 
 
Fig. 3. Branched network to be simulated and measured 
with TDR. The cables are 50 ohm RG58 coaxial cable. 
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IV. LUMPED-ELEMENT MODEL OF 
TRANSMISSION LINE 

 
We can see from Fig. 4 that the simulation is close to 

the measured response, but it misses the frequency 
dependent filtering effect of the lossy transmission line. 
Many transmission lines are much lossier than this 
coaxial cable and as a result have a much greater 
mismatch between ideal and measured data. This 
attenuation is frequency-dependent and can be added to 
the model by including RLGC transmission line 
parameters [10]. 
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Fig. 4. Comparison of simulated and measured TDR 
responses for the network of wires shown in Fig. 2. 

 
 
In equation (4) R is the resistance of the conductor, 

which is typically small; however, G is the conductance 
in the insulation and the region around an unshielded 
transmission line which is typically not small for the high 
frequency terms in the TDR step function. The complex 
propagation constant describes the attenuation (real part) 
and phase shift (imaginary part) for a transmission line, 

 
                ( ) ( )( )γ ω ω ω= + +R j L G j C .                     (4) 

 
This propagation can be considered to be a filter with 

a transfer function of, 
 
                            ( )( ) γ ωω −= zH e  .                         (5) 

 
Because it now involves a filtering effect, the signal 

contained in at a node is now no longer single valued but 
is a vector of signal values in time at each individual node 
as shown in Fig. 5.  
 
 

 

 
 

Fig. 5. Illustration of signal vectors, where xi(t), xj(t), xk(t) 
and xl(t) are as represented in Fig. 1. 
 

The sampling interval or time resolution for the 
simulation is naturally determined by the distance z 
between the adjacent nodes, i.e. the time it takes for the 
signal to travel a distance of z that is T as in equation (1). 
According to sampling theory, this sampling interval 
determines the highest frequency contained in our 
simulation. At the same time, the frequency resolution, 
∆ω, of the simulation is determined by the length of the 
signal vectors at individual nodes.  

Let the length of the signal vectors be n, and the 
highest simulation frequency be Ω, which gives the 
following relationships, 

 
  

 2ωΩ = ∆ =n
T

                          (6) 

and 
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The discrete form of the filter H(ω) becomes 
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To illustrate the signal vectors at adjacent nodes, we 

assume H = I, i.e., the transmission line is a perfect 
conductor, or the response of the branched network is an 
impulse. Then, as in equation (8), we may have at time t, 
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As H = I, we have, 
 

ˆ( ) ( )= −j iv t v t T .                         (11) 
 

In fact, when H is flat in the frequency domain, there 
is no information gained by keeping the higher frequency 
resolution. So, we can set n = 1, and when we apply the 
argument of equation (11) to all the other nodes, we will 
have equation (3), just as it should be. 

Now, let the Fourier Transform of ˆ ( )iv t  and ˆ ( )jv t  

be ˆ ( )iV t  and ˆ ( )jV t , respectively. Then for a transmission 
line with H as in equation (4),  

 
ˆ ˆ( ) ( )= −j iV t HV t T  .                      (12) 

 
For this application, it is easier to apply this in the 

frequency domain rather than in the time domain. 
We can further compact our notation by combining 

the signal vectors at individual nodes into a state vector 
where each of its entries is a vector itself. The state vector 
is defined as, 
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where T indicates a vector transpose. 

A is the transition matrix telling us the transition 
properties between the adjacent nodes, and it can be 
applied to the frequency domain as well. We have to be 
aware that the entries of A are now applied to the entries 

of the state, which are vectors. Combining equations (3), 
(12), and (13) we have,  

 

−=t t TV AHV           (14) 
 

The simulated TDR response of RG58 cables in the 
branched structure shown in Fig. 3 is presented in Fig. 6. 
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Fig. 6. Comparison of simulated response with 
transmission line model added and measured TDR 
response. 
 

From Fig. 6, we observe that by adding the complex 
propagation constant, the simulation result is improved. 
Additional differences between the simulated and 
measured system may be due to variation between the 
ideal and actual characteristic impedance of the cable and 
impedance of the connections that was not accounted for 
in the model. 

 
V. HIGH SPEED REALIZATION 

 
Implementation of equation (14) can be further 

speeded up if the network consists of a uniform wire type, 
and the TDR input signal is used as in the previous 
examples. 

Some basic mathematical properties can be used to 
facilitate further discussion. Let the network be 
represented by transfer function h(⋅), which is linear. 
Then an input signal f(⋅) will generate an output response 
of y(t) = h * f(t). In the above expression, * indicates the 
convolution operation which is defined as, 
  

 
( ) * ( )

        ( ) ( ) .τ τ τ

=

=  −  ∫
y t h f t

h f t d                           (15) 

 
This may be represented graphically as in Fig. 7. 
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Fig. 7. System representation of wire network. 
 
From equation (15), we have, 
 

    * ( ) ( ) ( )

                     ( ) [ ( )]

                     ( ) ( )

                     * ( )
    * ( ) * ( ) .

τ τ τ

τ τ τ

τ τ τ

= −

= −

′= −

′=
′⇒ =

∫
∫
∫

d dh f t h f t d
dt dt

dh f t d
dt

h f t d

h f t
h f t h f t dt

            (16) 

 
Since the TDR signal, f(t), is a step function at 0, 

then f’(t) becomes a delta function δ(t). Then, from 
equation (3) without considering the filtering effect, the 
impulse response of the wire network in Fig. 3 is a train 
of impulses with peaks corresponding to junctions of 
impedance mismatches and their multiple reflections. 
Figure 8 shows this train of impulses.  
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Fig. 8. Impulse response of the wire network in Fig. 3. 
 

Considering a particular peak, pk, from the train of 
impulses as marked in Fig. 6, which has a magnitude of 
Ak and a time delay of Tk gives,  

  
( )δ= −k k kp A t T .                         (17) 

 
There are two important aspects of this derivation. 

First, since n(t) is linear, the filtering effect of the wire 
can be considered for  independent peaks. Second, no 

matter how many junctions cause multiple reflections of 
pk, the total distance of its travel can be determined by 
delay Tk . The filtering effect pk will experience depends 
only on the length of wire it travels through. This filter is 
denoted by ( )

kTh t , and the filtered version, of pk 
becomes, 
 

( ) = −
kk k T kp A h t T .                     (18) 

  
Summarizing the above two aspects, we have, 
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In its discrete version, equation (19) becomes, 
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where the sample rate is the same as in equations (6) and 
(7), and mi  is the number of samples for the signal to 
travel in Ti. So from equation (8), the Fourier transform 
of [ ]−m ih n m

i
 becomes,  
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Then equation (19) may be written as,   
 

[ ] ( ) .1′ = Λ∑ m
i

i

Y k A eH i                  (22) 

where l  is a unit vector. Then y’[n] is found from the 
inverse Fourier transform of equation (22). Then from 
equation (16), y[n] can be obtained by integration. Figure 
9 shows the filtered impulse response of the wire network 
in Fig. 3 with equation (22), and its integral. The integral 
y[n] is the same as the result shown in Fig. 6. 

f(t) y(t) 

h(t) 
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Fig. 9. Impulse response of the wire network in Fig. 3 
filtered as equation (24) and its integral. 
 

VI. CONCLUSION 
 

This paper has described a simple and effective 
method of analyzing time domain fields on ideal or non-
ideal branched networks of wires. The method can be 
used to evaluate both reflectometry signatures and 
communication systems made up of branched wire 
networks. It could also be adapted to a grid of wires such 
as may be used in interconnected sensor networks.  Use 
of the frequency-dependent attenuation constant provided 
significantly better agreement between the ideal and 
measured responses. 
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