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Abstract – The paper deals with the inclusion of 
inhomogeneous dielectrics in a full-wave transmission 
line model for high-frequency analysis of interconnects. 
This “enhanced” transmission line model is derived from 
a full-wave integral formulation of the electromagnetic 
problem, and the inclusion of dielectrics is performed by 
an accurate semi-analytical evaluation of the Green 
functions for layered planar structures. The resulting 
model has a computational cost typical of a TL model but 
is able to perform a full-wave analysis in frequency 
ranges where the standard TL model may no longer be 
used. Moreover, as shown in the proposed examples, the 
model gives the possibility to investigate separately 
several phenomena affecting the high-frequency behavior 
of interconnects, like losses in dielectrics, unwanted 
radiation and excitation of parasitic modes. 
 
Keywords: High-speed interconnects, transmission line 
model, full-wave analysis, Green functions, and parasitic 
modes. 
 

I.    INTRODUCTION 
 
Electrical interconnects in high-speed circuits are 

usually modeled by means of the popular transmission 
line model, which assumes a propagation of quasi-TEM 
mode type. This model has been thoroughly studied in the 
past and it has been proven to be described in a simple 
and accurate way, the effects of interconnects on the 
signal (delays, mismatching, crosstalk, …) [1]. However, 
in many cases of practical interest due to the ever-
increasing operating frequencies and to size decreasing, 
the quasi-TEM hypothesis of propagation no longer 
holds. In such cases high-frequency effects arise, such as 
radiation, mode conversion and dispersion, which are 
crucial to correctly estimate the system performance. 
These effects are not included in the standard 

transmission line model (STL) and would require, in 
principle, a full-wave analysis. This kind of analysis has 
two disadvantages: a high computational cost and a poor 
qualitative insight on the solution. It is indeed difficult to 
distinguish between the different phenomena quoted 
above. To solve both problems, several efforts have been 
made to obtain generalized transmission line models able 
to overcome the validity limits of the STL model while 
retaining the same simplicity and a low computational 
cost (e.g., [2-5]). 

The Authors have recently proposed an enhanced 
transmission line (ETL) model which is able to describe 
in the frequency domain interconnects for which the 
characteristic transverse dimension is comparable to the 
characteristic wavelength of the carried signals. This has 
been done for two-conductor interconnects in [6-8] and 
for a multiconductor interconnect in [9-10]. The model 
has been successfully used to foresee effects like 
radiation in the transverse plane, dispersion due to the 
finite length of the interconnect, differential to common 
mode conversion in asymmetric interconnects and high-
frequency crosstalk. However in all these papers the 
embedding dielectric has been assumed uniform. In this 
paper the multiconductor ETL model is extended to 
inhomogeneous dielectrics, so that the analysis of the 
above mentioned high-frequency effect may be 
performed for interconnects of practical interest such as 
the microstrips. 

Section II is devoted to the problem formulation in 
presence of inhomogeneous dielectrics. The starting point 
is the integral formulation of the electromagnetic problem 
based on the vector and scalar potentials satisfying the 
Lorenz gauge. The formulation involves the Green 
functions for the considered structure: a general case is 
considered, where an expression of the Green functions 
for dielectric layers with different permittivity and a 
ground plane is used. These Green functions are 
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evaluated semi-analytically: the principal part describing 
the propagation of signals is extracted analytically, 
whereas the remainder describing parasitic modes due to 
the non-ideal behavior of the interconnect is represented 
through equivalent low-order systems identified by a 
vector fitting procedure [11].  

In Section III the ETL model is derived with suitable 
approximations from this integral formulation. The ETL 
model has the same mathematical structure as the STL 
model, the only difference being in the relations between 
the per-unit-length (p.u.l.) magnetic flux and the current 
and between the voltage and the p.u.l. charge, 
respectively.  In the STL model they are local, whereas in 
the ETL they involve spatial convolutions.  

In Section IV first the ETL model predictions are 
successfully compared to the full-wave solutions obtained 
by two different 3D numerical codes. The case study 
highlights the inaccuracy of the STL model in high-
frequency ranges. Then a deep investigation of the high-
frequency solution is performed, by analyzing the effects 
of different phenomena like frequency-dependent 
dielectric losses and unwanted radiation in the transverse 
plane. A second case-study refers to a coupled microstrip, 
and is analyzed in order to evaluate the high-frequency 
crosstalk noise. 

 
II.    INTEGRAL FORMULATION AND THE 

INCLUSION OF INHOMOGENEOUS 
DIELECTRICS 

 
Let us consider the interconnect of Fig. 1, of total 

length l, made by two signal conductors on a dielectric 
layer of thickness h and a ground plane. Let us assume 
the conductors to be ideal and the dielectric permittivity 
to be 0εε r  in the layer and 0ε  outside it (the magnetic 
permeability is everywhere 0µ=µ ). Let us denote with 
Σ1 and Σ 2  the signal conductor surfaces.  

In frequency domain we can express the fields in 
terms of the electrical scalar and magnetic vector 
potentials ϕ  and A  (Lorenz gauge), 

 

 ABAE ×∇=ϕ∇−ω−=     ,j .                    (1) 
 

It is convenient to express the vector and scalar potentials 
in terms of the current density ),( xs ⊥rJ  and charge 
density ),( x⊥σ r , through the integrals, 

( ) ( ) ( ) ,'',1

0
∫∫ σ

ε
=ϕ ϕ

S
dSG rrrr                       (2) 

 ( ) ( ) ( )∫∫ ⋅µ=
S

sA dSG '',0 rJrrrA                     (3) 

which involve the Green functions for the considered 
multilayered structure (including the ground plane). 

 
 

 
Fig. 1. The considered interconnect: (a) cross-section 
view; (b) adopted references for terminal voltages and 
currents . 
 
  

The layers properties change along z�  (see Fig. 1), 
hence ( )rGA  has the structure [12], 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

zzzyzx

yzyy

xzxx

A

GGG
GG
GG

G 0
0

. (4) 

In many practical applications the thickness of conductors 
is small compared to their width w. If we consider zero-
thickness for the signal conductors and assume the 
current density sJ  directed along x̂ , we have the simple 
expression xxA GG = . We consider perfect conductors 
hence the sources are located on the surface 

∪ 21 ΣΣ=S of the two conductors.  
As for the dielectric, we can introduce frequency-

dependent losses through a simple Debye model, 
assuming (e.g., [13]), 

( ) ,
1 ωτ+

ε−ε
+ε=ωε ∞

∞ i
DC

r  (5) 

where DCεε∞ ,  and τ are constant values associated to 
the particular dielectric chosen.  

For the considered structure the Green functions may 
be evaluated in closed form in the spectral domain: let 

)(~
ρkGxx  and )(~

ρϕ kG  be their transforms in such a 
domain, where kρ is the spectral domain variable. The 
spatial domain functions are obtained by evaluating the 
Sommerfeld integrals (e.g., [14]), 
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where )2(
0H  is the Hankel function. The cost for 

computing such integrals is extremely high because of the 
slow decay of the integrands. A way to overcome this 
problem is to extract analytically the terms which are 
dominant in the low frequency range, referred to as the 
quasi-static terms [15], 
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in which )1/()1( rrK ε+ε−=  and 000 µεω=k  is the 
vacuum space wavenumber. Once these terms have been 
extracted, the remainders (dynamic terms) may be 
evaluated in an efficient way by approximating the 
corresponding expressions in the spectral domain, for 
instance by using a vector fitting technique [11], 
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so that the final expressions are given by 
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The quasi-static terms are associated to the 
fundamental mode, are the only terms left when 0→f  
and dominate the local range interactions. The dynamic 
terms are associated to parasitic waves (surface waves, 
leaky waves), vanish as 0→f  and dominate the long-
range interactions. Figure 2 gives an example of scalar 
potential Green function ϕG  for a single microstrip with 

9.4=ε r  and .7.0 mmh =  The quasi-static term 
dominates the near-field region, whereas for increasing 

distances the dynamic terms become the principal ones. 
Unless very high frequencies are considered, in practical 
interconnects the quasi-static terms are dominant, hence 
the approximation of the remainder is usually 
satisfactorily pursued by a low-order model. A reliable 
criterion [16] states that the Green functions are 
accurately represented by the quasi-static terms when 

1.010 <−ε rhk . 
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Fig. 2. Typical high-frequency behaviour of the scalar 
potential Green function: contributions of the quasi-static 
and dynamic terms. 
 

 
III. THE ENHANCED TRANSMISSION 

LINE MODEL 
 

In order to derive a transmission line model, let us 
impose the charge conservation law, 

( ) ,ωσ−=⋅∇ js
s J  (13) 

where ( )s∇  is the surface divergence operator. In 
addition we must impose the PEC boundary condition, 

( ) .ˆ 0nA =×ϕ∇−ω− Sj  (14) 

Let us assume the dependence of the sources to be of 
separable type, 

),()(),( 11111 xQsFxs =σ )()(),( 22222 xQsFxs −=σ , (15) 

),()(),( 11111 xIsFxsJ s = )()(),( 22222 xIsFxsJ s −= (16) 

where )(2,1 xQ  and )(2,1 xI  are, respectively, the p.u.l. 
charges and the currents on the two signal conductors, 

2,1s  are the curvilinear abscissas along the conductor 
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contours Γ1  and 2Γ , whereas the shape functions )(2,1 sF  
describe the transverse distributions of the sources. Let 

na  be a “characteristic dimension” of the cross-section of 
the n-th conductor, i.e. a characteristic distance between 
two points on the conductor contour. For instance na  
would be equal to the diameter for a circular cross-
section. For this case we may assume 11 wa =  and 

22 wa =  (Fig. 1). Next, let us introduce a “characteristic 
dimension” ch  of the transverse section. For a single 
trace microstrip we can assume hhc = , where h is the 
dielectric thickness, whereas for the general case of 
coupled microstrips as in Fig.1 we may assume ch  as the 
mean value between h and the distance between the two 
traces w. Now, assuming 10 <<nak  for any n and 

50 <khc  it is possible to evaluate )(2,1 sF  once for all by 
solving a quasi-static problem in the transverse plane and 
to approximate at any abscissa x the values of ),( 2,1 xsA  
and ),( 2,1 xsϕ  on the surfaces 1Σ  and 2Σ  with their 
average values >< )(2,1 xA  and >ϕ< )(2,1 x  [7]. In all 
these conditions it is easy to derive from equations (13) 
and (14) the following governing equations, 

),()( xi
dx

xd QI
ω−= )()( xi

dx
xd ΦV

ω−= , (17) 

)(xΦ  being the p.u.l. magnetic flux vector. In the same 
conditions, from equations (2) and (3) we derive the 
constitutive relations, 

∫ −µ=
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I dxxxxHx
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where the entries of the kernel IH  are given by, 

∫ ∫
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I sdsFssGds

c
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whereas VH  has the same expression involving ϕG . The 
kernels H(x) are computed numerically, paying attention 
to the logarithmic singularity of their diagonal terms, 
arising from the quasi-static parts of the Green functions 
[8-10]. 

The ETL model is given by equations (17) to (19) 
and is a generalization of the STL model, which is 
obtained when relations (18) and (19) are of local type. 
This happens for interconnects electrically small in the 
transverse plane ( 10 <<khC ) and of infinite length along 

x. In this case the kernels in equations (18) and (19) tend 
to spatial Dirac pulses, 
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00
( ) [ ( ') '] ( ) ( ).
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V V VH x H x dx x H xδ δ
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Hence equations (18) and (19) reduce to 

),()()( 00 xLxHx I IIΦ =µ=  (23) 

).()(1)( 1
0

0
xCxHx V QQV −=

ε
=  (24) 

Note that for homogeneous dielectrics it is ,VrI HH ε=  
hence ,00 VrI HH ε=  and equations (23) and (24) yield 
the classical result ILC r 00µεε= . By combining 
equations (23), (24), and (17) we obtain the standard 
transmission line model,  

),()( xCi
dx

xd VI
ω−=  )()( xLi

dx
xd IV

ω−=  (25) 

In conclusion, the ETL model (17) to (19) generalizes 
the STL one (i.e., equation (25)), removing the 
assumptions that the transverse characteristic dimension 
of the interconnect is electrically small and that the 
interconnect is infinite. The ETL model is valid in the 
following limits: (i) the characteristic dimensions of the 
terminal devices are small compared to the interconnect 
length; (ii) the characteristic transverse dimension a of 
the conductors is electrically small, 10 <<nak ; and (iii) 

50 <khc , where ch  is a characteristic dimension in the 
transverse plane.  

 
IV.  NUMERICAL RESULTS 

 
The first case considered refers to a PCB microstrip, 

with the geometry of Fig. 1, assuming a single signal 
conductor above a ground plane and a length of 36 mm. 
The signal conductor has zero thickness, width 

mm 8.11 =w and lies on a FR-4 dielectric layer of 
thickness mm 016.1=h , dielectric constant 9.4=ε r  and 
magnetic permeability 0µ=µ . The conductors and 
dielectric are assumed ideal. 

The ETL model solution is compared to the STL one 
and to two 3D full-wave solutions; one provided by the 
commercial FEM code HFSS [17] and the other by the 
tool SURFCODE, which is based on the Electric Field 
Integral Equation formulation [18]. Assuming for this 
case hhc = , since 65.3≈ε reff  we have 1.00 ≈chk  at 
1.4 GHz, hence we expect the STL, ETL and full-wave 
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solutions to agree up to frequencies around 1 GHz. This 
is clearly put on evidence in Fig. 3, where the input 
impedance of the line left open at the far end is plotted 
from DC to 0.8 GHz. For higher frequencies, the STL 
solution becomes inadequate, whereas the ETL one is still 
able to reproduce the full-wave solution, as shown in Fig. 
4.  

Since the conductors and the dielectric are assumed 
to be ideal, the finite amplitude of the peak is only due to 
the lossy effects related to the presence of unwanted 
parasitic modes (surface waves, leaky waves). In this 
condition a small but non-negligible amount of power is 
associated with radiation in the transverse plane. The real 
power absorbed by the interconnect fed at one end by a 
sinusoidal current of rms value 0I  and left open at the 
other end is given by, 

{ } .2/)()( 2
0IZrealP inin ω=ω  (26) 
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Fig. 3. Low frequency behaviour of the absolute value of 
the input impedance, Case 1. 
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Fig. 4. High frequency behaviour of the absolute value of 
the input impedance, Case 1. 
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Fig. 5. Absorbed power for ideal dielectric, Case 1. 
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Fig. 6. ETL solution for absorbed power with ideal and 
real dielectric, Case 1. 

 
 

In Fig. 5 it is shown the absorbed real power computed 
with mAI 10 = . The ETL solution is in good agreement 
with the full-wave one around the peak, whereas there is 
a deviation in the other ranges (however, the values of 
power are very low). Note that, since we are in the ideal 
case, the STL input impedance is strictly imaginary; 
hence the absorbed real power predicted by the STL 
model is always zero. 

Let us now introduce a lossy dielectric described by 
the Debye model of equation (5), with 

178.4,07.4 =ε=ε∞ DC , and ps15.1=τ . Figure 6 
shows the dissipated power computed in the same 
conditions described for Fig. 5, both considering a real 
and an ideal dielectric with .178.4=ε=ε DCr  It is clear 
that in this case the dielectric losses are negligible with 
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respect to the losses associated to the other high-
frequency phenomena.  

The ETL model may be used to perform qualitative 
analysis on the solution. For instance, it is possible to 
distinguish between the high-frequency effects associated 
to the fundamental mode from those related to the 
excitation of parasitic modes. As shown in Section II, this 
could be easily done by switching on and off the 
contribution of the dynamic terms in the expression of the 
Green functions. Figure 7 shows, for instance, the mutual 
impedance of the above-considered line, computed by the 
STL model and by the ETL one, with or without the 
contribution of the dynamic terms. For this case, the 
quasi-static term is the only relevant, even for frequencies 
up to 7 GHz. 

A second example is provided by a coupled 
microstrip made by two signal conductor and a ground 
plane. In this case (see Fig. 1) we have considered 

mm, 8.121 === www  mm, 1=h 17.4=ε r  and a 
total length of 36 mm. The line behavior is investigated in 
the frequency range (0 6)− GHz, so extending to values 
of chk0  high enough to expect inaccurate results from 
the STL model. Here a crosstalk analysis has been 
performed, by assuming line 1 (see references in Fig. 1) 
to be fed at the near end by a unitary sinusoidal voltage 
source and open at the far end. The near and far ends of 
line 2 are both terminated on open circuits. Figure 8 
shows the frequency behaviour of the near and far end 
crosstalk voltage defined as 1121 /VV  and 1122 /VV , 
respectively. Note that in this case-study we have 
approximated the complete Green functions, considering 
only the contribution of the quasi-static term, which is 
again the dominant one. 
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Fig. 7. Absolute value of the mutual impedance, Case 1. 
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Fig. 8. Near-end (a) and far-end (b) crosstalk voltage 
normalized to the input voltage, Case 2. 

 
 

V. CONCLUSIONS 
 

The extension to inhomogeneous dielectrics of a full-
wave transmission line model is obtained by including in 
the integral formulation a semi-analytical expression of 
the Green function for planar layered interconnects. Case-
studies show the reliability of the model, as compared to 
3D full-wave numerical solutions. The model is able to 
foresee high-frequency effects like radiation and 
dispersion due to excitation of unwanted parasitic modes. 
The way used to include inhomogeneous dielectrics into 
such a formulation is promising, since it is possible to 
split the Green function in terms describing the signal 
propagation (evaluated analytically) and remainders 
associated to the unwanted parasitic modes. This allows 
an accurate evaluation of the influence of such unwanted 
modes, exploiting the possibility to switch on and off the 
corresponding terms in the Green function expression. 

(a) 

(b) 
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