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Abstract: Near- to Far-zone transformation in the
Finite-Difference Time-Domain (FDTD) method can be
performed in either the time domain or in the frequency
domain. For free space conditions, the time domain
near- to far-zone transformation is generally much faster
and more memory efficient to use, when we require re-
sults at a large number of frequency points at a small
number of far-zone directions. However when a lossy di-
electric half-space is present, representing the ground. the
frequency domain transformation has been favored since
the Green’s functions involved are relatively simple to ex-
press in the frequency domain compared with the efforts
needed to transform these ezpressions into the time do-
main. This paper describes a combined time- and fre-
quency domain near- to far-zone transformation above
a lossy dielectric half-space, where it is not necessary
to transform the equwalent currents into the frequency
domain. This transformation is much faster than the
pure frequency domain transformation and comparisons
are made between the two different approaches. For val-
idation purposes, scattering of a dihedral above a lossy
dielectric half-space is considered.

1 Introduction

The FDTD method is very useful for broadband scat-
tering applications involving complex object geometries
and material parameters. One area of interest has been
eround penetrating radar and synthetic aperture radar
simulations in geoscience applications and ground target
detection. where the ground must be included in the sim-
ulations. Latelv. a number of papers have been published
iu this area [1-6] where either FDTD or the Method of
Moment has been used. Both methods have their advan-
tages and disadvantages depending on the problem type.
Time-domain methods such as FDTD have the advan-
tage of generating results for the entire frequency range
in a single simulation.

A near- to far-zone transformation is necessary in

FDTD since only the near fields are accessible in the com-
putational volume. When performing the near- to far-
zone transformation in the frequency domain, the equiv-
alent surface currents on a closed surface arc transformed
into the frequency domain by a Discrete Fourier Trans-
form (DFT). The far-zone vector potentials can then be
easily calculated by multiplving the equivalent currents
with the Green's function and summing the contribu-
tions over the closed surface.

Alternatively. the near- to far-zone transformation can
be performed in the time-domain. For free-space condi-
tions. the Green's funcrion corresponds to a time shift
of the equivalent currents. Using this tvpe of transfor-
mation the fields. at retarded times for each position of
the surface currents on the closed surface. must be ac-

cumulated and stored in “far-zone arravs”. one for each

far-zone direction |7

Depending on the problem tvpe either approach has
its advantages. If a large number of far-zone angles are
to be considered. at a small number of frequencies, the
frequency domain transformation is probably preferable.
On the other hand. if only a few far-zone angles are de-
sired over a large number of frequencies. the time-domain
transformation is generally faster to use.

When the scattering object is placed on or below
the ground the transformation procedure becomes more
complicated. The free-space Green's function must be
replaced by a Green's function that takes reflection and
refraction into account. If only the far-zone field is con-
sidered. this Green’s function can be expressed as a func-
tion of the Fresnel reflection and refraction coefficients,
e.g. 191, If losses are present in the ground material, the
Green's functions include a frequency dependency which
makes it simpler to perform the near- 1o far-zoue trans-
formation in the irequency domain. rather than to use
a time consuming convolution between the fields and a
complicated time-domain Green's function. Therefore
it is generally favorable to perform the near- to far-zone
transformation in the frequency domain. after transform-
ing the equivalent surface currents into the frequency do-
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main by a DFT.

However, for applications with few scattering angles,
significant time savings can be achieved by combining the
time-domain and frequency domain algorithms. The far-
zone contribution of the equivalent currents can be sorted
into different time-domain arrays, each corresponding to
surface integrals of the vector potentials in the time-
domain. After the FDTD execution, these vector poten-
tials can then be transformed into the frequency domain
and multiplied with different frequency dependent parts
of the Green’s function.

This paper describes the transformation method and
gives examples of time savings that can be achieved. A
dihedral placed above lossy ground is used as an test ob-
ject and results using both frequency-domain and time-
domain transformations in FDTD are presented. For
validation purposes, comparisons are also made with the
method of moment technique which includes the Som-
merfeld type of Green’s function (NEC-3).

2 Theory

By reciprocity, near- to far-zone transformations can be
applied in the same way as calculating incident plane
wave fields at the source points. For scattering problems
including the ground, this type of transformation ap-
plied in the frequency domain was described in {1]. In 3]
results using a similar near- to far-zone transformation
were presented, where calculations of the equivalent sur-
face currents were performed according to [10]. In [3] it
was also shown that these surface currents are consistent
with the FDTD-version of the reciprocity theorem. The
main feature of these surface currents is that they are
calculated at two different surfaces; one for the E-fields
and one for the H-fields, separated with a half cell.
Using the reciprocity theorem, the far-zone Green
functions can be easily expressed in terms of Fresnel re-
flection and refraction coefficients. The general expres-
sion for the far-field parallel to a unit vector p can be

written as [3]
w0 // [(ﬁ x H,) G, -f)} ds'

S
+// [(ﬁXEs)Emf’] ds’. (1)
S

Es(r)-p =

where we have adopted the notation of dyadic Green
functions described in [11]. G, and G,, are the electric
and magnetic (dyadic) far-zone Green’s functions for a
homogeneous lossy dielectric half-space.

Let an infinitesimal test current source be placed in
the far-zone (with respect to the integration surface S
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in (1)). Using a normalization factor as in [11], this test
current source can be written as

~

i P 5@ ). (2)
WHho

Then we can recognize the reciprocity theorem if we iden-
tify

Jt=—

E,=G.-p (3)

as the electric field from the small current source (2) in
the far-zone. The corresponding magnetic field H; is

related to Em through

—twpoH; = Gy - P (4)
since
V x Ge = Gm. (5)

The desired electric field in the far-zone is calculated at
the test current source position above the surface by (1).
When the distance r goes to infinity the incident field
from the test current source can be approximated by a
plane wave, and the electric dyadic Green function can
be expressed in terms of Fresnel reflection and refraction
coefficients. Note that it is assumed that pLf in the
derivations below. As an example, the far-zone Green’s
function projected on P, for source vectors r’ above the
surface (indicated with superscript a), becomes

—ikr ,_

— (Teikf--r’ _*_ﬁeeikir,.’) b (6)

—_—a f N
G.(r,r') - p=

where I is the identity matrix, R, is a matrix containing
the reflection coefficients, see (8) below, and r,’ is the
mirrored position vector with respect to the ground level.
The position vectors r’ and r,’ are shown in Fig 1. They
are defined relative to a phase center, preferable in the
middle of the computational volume. If we choose the
plane of incidence to be a X-Z -plane and if we divide
the vector p into components parallel and perpendicular
to this plane,

P =pjcosbk +p,y — pysinbz. (7)

In this case the dyadic ﬁe becomes

= “Iy 00
Re=| 0 TI. 0 ®)
0 0 Ty

where the reflection coefficients are, according to [9], us-
ing a slightly different notation,

L - n?cosf — /n? —sin’ 4 )
I n2cosf + /n? — sin® 4
cosf — /n2? —sin’ 6

cosf + vn2 —sin? 6

(10)
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Figure 1: Slice of the computational volume. Vec-  Figure 2: Slice of the computational volume. Vec-

tors used in the derivation of the Green’s function from
sources on S, above the surface are shown.

where we assume a non-magnetic ground. The index of
refraction, n for the lower half-space is

g

(11)

n=,/& + = .
WWEQ

The corresponding Green’s function projected on p,

for a source below the surface (indicated with superscript
b) can be written as

—ikT
= o o EYTEC) R
Teelkr rg ezkzb v/ n?—sin?é p (12)

47r

—b R e
Ge-pz

where k is the free space wave number. The vectors r,’
and z,’ = 2’2 are components of the r’ vector pointing
to a source point P on Sy below the ground, via the pro-
jection on the ground level, see Fig. 2 (2’ < 0 in (12)).

The transmission matrix T, becomes

_ 1-T 0 0
T, = 0 1+T, 0 ) (13)
0 0 L(1+Ty)

The corresponding magnetic Green’s functions projected
on P can be derived as
—a e——ikr

G, p=1 o (k x Ie* ™ + Kk, x ﬁeeik“”')

P
(14)

tors used in the derivation of the Green’s function from
sources on Sy below the surface are shown.

— —ikr —
(_;_b ‘p= ’ie (kt X Teeiki‘rgleik‘:bl V/n?—sin® 6) )
(15)

where k x I etc. are the anterior vector products [11] and
where

k = kf = k(sinf% + cos03z)

k., = k(sinf%x — cosbz)
k; = k(sinfx + Vn? —sin” §2) (16)

are the propagation vectors of the direct, reflected and
refracted waves. Although the derivation above assumes
that t lies in the X — Z -plane, the Green’s functions
can be easily generalized for arbitrary scattering angles
by applying a proper rotational matrix.

R, and T. will be frequency dependent if losses are
present in the ground, i.e. o # 0 in (11). In this
case, it is not straightforward to transform these Green’s
functions (6), (12), (14) and (15), into the time-domain.
Therefore, the Green’s functions are divided into sepa-
rated parts; one part which can be easily transformed
into the time-domain and one part that is maintained in
the frequency domain.
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For simplicity, we exemplify the derivation using only
the first integral in (1), corresponding to the magnetic
far-zone vector potential A. In the far-zone, the polar-
ization vector p is transverse to £ and can therefore be
expressed in the unit vectors @ or . Applying the scalar
product p- A, the magnetic vector potential for a certain
polarization can be determined, denoted 4, where p = 6
or p = . Using (1) and (6) the contribution to the fre-
quency domain vector potential from sources above the
surface can be written as

10wy = B 0 AL R 17
‘p(w)-m———(p.{- R ep) (17)
where
Aw) = / / (A x Hy(w,r') - pe™ s, (18)
Sa
Ap(w) = //(n x Hy(w, ') ™'ds’  (19)
Sa
and

R., = R, - p. (20)

The surface integral is performed on the part of S that
is above the ground, denoted S, in Fig. 1.

By dividing the vector potential into these parts we
can avoid a complicated convolution integral. Both AO
and A g can be easily transformed into the time domaln

- //(n x H,( : )-pdS"  (21)
Sa
and
/ / st (22)

Note that the three Cartesian components of (22)
depend on different H-field components, dependent on
which side of S, the integration is performed. The sur-
face S, is aligned to the electric grid in FDTD while the
corresponding integration of the electric vector potential
will be performed on a surface aligned to the magnetic
grid adjacent to S,, according to [10].

The time-domain parts of the vector potential are cal-
culated during the FDTD-run which corresponds to an
ordinary time-domain near- to far-zone transformation
in FDTD [8], [10]. After the FDTD-run these parts
are transformed into the frequency domain and the fre-
quency domain vector potential is calculated simply by
using (17). The procedure for obtaining the electric vec-
tor potential F is analogous. For source points above
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the surface the procedure is equivalent to a traditional
free-space time domain transformation for FDTD, ex-
cept that this procedure also requires extra storage for
the vector time-domain array Ag (and Fg).

For sources below the ground the situation is slightly
different and requires more storage of data during the
FDTD-run. Since the second exponential part in (12)
includes both the integration coordinate z; and a com-
plex frequency dependence (if losses are present), an ar-
ray of temporary stored vector potentials must be used;
one for each layer, I, below the ground corresponding to
different values of z;, see Fig. 2. The integration of the
vector potentials are performed on the part of S that
is extended below the ground, denoted S,. For the four
vertical surfaces of Sy below the ground-level, the tempo-
rary time-domain vector potentials are integrated along
a closed path Cy(l) at each zj(I). One array every half
Az is necessary due to the different spatial shift of the
field components in FDTD. The bottom surface is inte-
grated as a whole since this surface is positioned at a
constant z,-level. The magnetic vector potential from
sources below the ground level can then be written as

—ikr
Ab(w) = B2
»() Anr

ATy (w) - Tep (23)

where

=
<

i
=i
%

(24)
and

ATiot (Ld) =

S Ap(w, Detk Ve (25)
3

The summation over ! in (25) symbolize the I-indices
from the surface level and below to the bottom part of .S,
and corresponds to the z'-part of the surface integration.
On the four vertical sides of S, the A7 vectors, one for
each z,', are written as

AT(w7l) =
Az ?( i x Hy(w,r')et*Frs’ |2 =z 1) ds’ (26)

Cu(l)
where () is the closed contour around S; at constant z'.

At the bottom surface of S corresponding to [ = l,in,
Ar is calculated using a surface integral

A-T (w lmzn =

//ans(w ) |armzy (tmin) €

wire'gg (27)
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Each A7 can be transformed into the time-domain anal-
ogously to (21) and (22). The temporary time-domain
vector potential arrays then become

2 i

Ar(t,]) = Az f Ax H(+ 00 dds' (29)
Cu(l)

and

AT(talmin) = //ﬁ X Hs(t +
Sbomin

= '
r-r,

~L,r)ds’. (29)

Note that these time-domain arrays are calculated using
a retarded time to the ground surface only. The time de-
lay corresponding to propagation vertically in the ground
will be added in the frequency domain after the FDTD-
run using (25). The procedure for the electric vector
potential is of course analogous. Due to the discrete na-
ture of FDTD, the integrals in the equations above are
replaced by summation when implemented in a program
code.

The procedure can now be summarized (exemplified
with the magnetic vector potential A here): A small
number of temporary vector potentials are integrated
across the enclosing surface in the time domain during
the FDTD-run. This corresponds to an ordinary time-
domain transformation in free space except that a few
extra arrays for storage of the far-zone data must be
used. After the FDTD-run these time-domain arrays are
transformed into the frequency domain (preferable with
an FFT) and the total vector potential can be formed
simply by summing up the different contributions.

Ap(w) =Ap(W) + A (w) =
—ikr

B (4w) + Ar(w) Ry (30)

+AT (W) - Tep)

where A7, (w) is a summation over the [ -indices in
the ground material according to (25). The procedure
for the electric vector potential F is treated analogously
and the final electric far-zone field can be calculated by

Ey =
E, =

—iwAg — wwnkF,
—iwA, + iwnkFy (31)

where 7 is the free space wave impedance. These expres-
sions correspond to (1) for the two different polarizations
of p.

If desired the far-zone electric fields can then be trans-
formed back to the time domain by an inverse FFT. A
small remark is in place here; if the near- to far-zone
transformation surface extends far below ground level,
thereby including a large number of FDTD-layers, the
number of temporary vector potential arrays might be
large and memory consuming.

3 Results

In order to check the accuracy and time savings of the
transformation a simple scattering object was chosen as
a test case. A 0.6m x0.6m dihedral was placed 0.285 m
above the ground, which has a conductivity of ¢ = 0.01
S/m and a relative permittivitty of ¢, = 10, see Fig. 3.
This type of scattering object is of interest in VHF /UHF
synthetic aperture radar imaging, discussed in [3]. The
cell size was 0.03 m, which implies that the size of the
dihedral is 20 x 20 cells. In FDTD, the reflection of plane
waves at the air-ground interface occurs a half cell size
above the top layer of horizontal electric field compo-
nents in the ground. This means that the bottom plate
of the dihedral defined in the electric FDTD-grid is posi-
tioned 9.5 cells above the ground (which is equal to 0.285
m) ‘

Let us assume that we were interested in the backscat-
tered far-zone field between 20 MHz and 700 MHz. The
cell size was 0.03 m cubed which implies 14 cells per
wavelength in free space at 700 MHz and only 4.5 cells
per wavelength in the ground material. The size of the
computational volume was 60 x 60 x 60 cells and the outer
boundary condition was an additional 6-layer PML (Per-
fectly Match Layer) {12]. The PML in the ground was
treated in a similar way as described in [13].

Both a frequency and a time-domain transform was
applied using this object. The angles of incidence are in-
dicated in Fig. 3 and the incident field was applied using
a Huygens’ surface [14] 15 cells from the PML boundary.

Applying the time domain near- to far-zone transfor-
mation to this problem, the frequency resolution will be
determined by the number of time-steps of the simula-
tion since we will transform the time domain result into
the frequency domain using a Fast Fourier Transform
(FFT).

Figure 3: Dihedral model both for FDTD and for MoM.
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Figure 4: Example of time-domain electric field in
front of the dihedral when illuminated by a plane wave
pulse with E;,. = 7v2eexp(—7%) V/m, where 7 =
4/(BAt)(t — 1.58At) with 8 = 35 and At = 54.9 ps.
The scattered field component E,(15,13,30) is shown.

For the frequency domain near- to far-zone transfor-
mation there is a free choice of frequency resolution. The
question is how many frequency points within the fre-
quency band of interest we should choose for the fre-
quency domain transformation. Generally, there is no
simple answer to this question, since object size, delays,
resonances etc. can affect the response of the scattered
fields. The crudest way is to make a test run in order to
see how many time-steps are necessary for the scatter-
ing signal to decay. As a rule of thumb, the frequency
interval should at least be

Af ~ (32)

N~

where T is the time it takes for the pulse response to de-
cay when the object is illuminated by a plane wave pulse.
As an example, the time response of the scattered field
of the dihedral when illuminated by a Gaussian deriva-
tive pulse can be seen in Fig. 4. The figure shows the
scattered horizontal electric field (E,) obliquely in front
of the dihedral (parallel to both dihedral plates). The
calculation ran for 1000 time-steps and estimating the
pulse response in Fig. 4 to be 50 ns, including a reason-
able margin, gives Af = 20 MHz. This means that we
should choose at least 35 frequency points between 20
MHz and 700 MHz for the frequency domain transfor-
mation.

Several simulations were performed using the two dif-
ferent near- to far-zone transformation methods. Also,
the surface on which the equivalent surface currents were
extracted was also altered between two positions; one
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Figure 5: X-Z slice of the computational volume at y =
30Ay. The different surfaces involved in the simulation
are indicated in the figure. The distances are measured
in number of FDTD-cells.

very close to the object, 12 cells from the PML bound-
ary and one further away from the object, 5 cells from
the PML boundary. The latter case implies that a larger
number of fields below the ground had to be included in
the transformation procedure. The area ratio between
the transformation surfaces in the two cases is 1.93. The
positioning of the different surfaces relative to the dihe-
dral and the ground can be seen in Fig. 5.

Scattering results were also calculated using the
Method of Moment code NEC-3. The mono-static radar
cross section (RCS) of the dihedral for horizontal polar-
ization can be seen in Fig. 6 and the corresponding phase
of the far-zone field can be seen in Fig. 7. As seen in the
figures, the correspondence is excellent. The phase refer-
ence point is in the middle of the computational volume.

The CPU time for the different FDTD-simulations are
plotted in Fig. 8. The simulations using the frequency
domain transformation were performed with three dif-
ferent numbers of frequency points between 20 MHz and
700 MHz in order to check the time dependence of this
transform. The number of frequency points for the time
domain transformation is dependent on the number of
time-steps used in the FFT which was 2048 in this case
(zeros padded). The vertical dash-dotted line in Fig. 8
indicates the lowest limit of desired frequency points ac-
cording to (32), which is 35 in this case.
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Figure 6: Magnitude of RCS for dihedral using FDTD
and for MoM. Both the frequency domain and the time-
domain transformation results are shown in the plot.
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Figure 7: Phase of far-field vector for dihedral using
FDTD and for MoM. Both the frequency domain and
the time-domain transformation results are shown in the
plot. The phase reference point is in the middle of the
computational volume, 10 cells above the dihedral bot-
tom plate.

In addition, a reference simulation was made without
any near- to far-zone transformation. This time reference
level is shown as a dotted line in Fig. 8. Note that the
dashed lines for the different frequency domain transfor-
mations would cross the CPU-time axis at the time-level
of the reference simulation if extrapolated to O frequency
points.

As seen from the figure, the time-domain transforma-
tion is at least twice as fast as the frequency domain
transformation if more than 35 frequency points are de-
sired. This is due to the fact that the currents are trans-
formed into the frequency domain using a DFT, which
may become very time consuming. The additional CPU-
time needed for the time domain transformation is very
small compared to the CPU-time of the reference simu-
lation. The near- to far-zone transformation is also sen-
sitive to the size of the enclosed surface S on which the
equivalent surface currents are calculated. The differ-
ence between the two transformation types would hence
become even greater for larger sizes of computational
volumes. The ratio between the slope of the two differ-
ent frequency domain transformation curves corresponds
well to the area ratio of 1.93 mentioned above.

70 . ,
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Figure 8  CPU-time in minutes for the FDTD-
simulations using frequency domain and time domain
transformations. Two different sizes of the transforma-
tion volume have been used.

4  Conclusions

A time domain version of the near- to far-zone transfor-
mation above a lossy dielectric half-space in FDTD has
been developed. The far-zone Green’s function has been
divided into different parts of which some are treated
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in a similar way as a traditional time-domain transfor-
mation in free space. After the FDTD-simulation, these
parts are transformed into the frequency domain and the
reflected and refracted parts are multiplied by the corre-
sponding Fresnel coefficients. Finally, the different parts
are added together to form the scattered field in the fre-
quency domain. Significant time savings can be achieved
if a large number of frequency points are desired. The
time savings depend on the size of the transformation
surface enclosing the object and the number of desired
frequency points. Comparisons with a frequency do-
main transformation using a DFT, applied to a dihedral
above ground, showed that the time-domain transforma-
tion was nearly a factor of two faster than the frequency
domain transformation. The difference would probably
be much greater if a larger problem size was considered,
since the additional CPU-time for the time domain trans-
formation is very small compared to CPU-time of the ba-
sic FDTD-algorithm, whereas the additional CPU-time
for the frequency transformation increases dramatically
with increasing area enclosing the scattering object.
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