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Abstract—Electromagnetic coupling to realistic wire
configurations exhibit large variations with respect to the
frequency, incident angle, and polarization of the interfering
signal. In this work, Characteristic Mode Analysis (CMA) is used
to calculate the fundamental modes of a terminated wire above an
infinite ground plane. Using the properties of the modes, the
coupled currents to the wire’s loads are predicted for different
incident excitations. Using this simple but practical wire
configuration, we show the versatility of CMA in practical
electromagnetic interference and coupling applications.

Keywords—Characteristic mode analysis, field-to-wire
coupling, interference.

I. INTRODUCTION

In a highly congested wireless spectrum, electromagnetic
interference poses a significant challenge in a wide range of
applications. Therefore, predicting the coupling or interfering
current to a particular load in a practical wiring system has 
received rising interest over the last decade [1], [2]. For
a particular wire configuration, several simulations and/or
measurements are needed to exhaustively quantify the
variations in the coupled currents due to variations in the
frequency, angle of incidence, and polarization of the
interfering signal. In this work, Characteristic Mode Analysis
(CMA) is applied to predict the coupling to a terminated wire
above an infinite ground plane. CMA decomposes the currents
induced on a scatterer in terms of a set of independent modes
and quantifies the modal behavior such as the relative
importance of each mode at the frequency of interest [3]. In
this work, we show how this modal behavior can be used to 
guide coupling and interference to practical wire systems.

II. COMPUTATIONAL ANALYSIS

A. Wire Configuration
Fig. 1 shows a 1 m wire, 3 mm in radius, and at a height of

0.1 m above an infinite ground plane. The wire is terminated
at both of its ends by 50 Ω loads labelled as Load 1 and Load
2, respectively. Moreover, a third 50 Ω load, Load 3, is
attached to the middle of the wire. In spite of the simplicity of
the configuration in Fig. 1, it has practical relevance in a wide
range of studies [4]–[6]. In the next Sub-section, we show how
CMA can be used to simplify the coupling analysis to the
different loads in Fig. 1.

B. Characteristic Mode Analysis of the structure
The CMA of the wire configuration in Fig. 1 is performed

using the commercial electromagnetic solver FEKO [7]. 
The components of the CMA are threefold: (i) the modal
significance spectrum (Fig. 2), (ii) the modal current 

distribution(Fig. 3), and (iii) the modal fields or the radiation
characteristics of each mode (Fig. 4) [8]. In the context of
electromagnetic interference, the modes represent all possible 
pathways for the external electromagnetic radiation to couple
to the wire configuration in Fig. 1. The modal current
distribution and the modal significance are completely
independent of the external excitation. The modal fields
represent the coupling between the incident field and the
modes. That is, the modal field patterns can be defined as the
map of the electric field directions that minimize/maximize
the coupling between the incident radiation and a particular
mode.

III. ELECTROMAGNETIC INTERFERENCE RESULTS

CMA provides the current distribution of the fundamental
modes of the structure allowing the prediction of the response
at different wire locations. For example, Fig. 3 shows that only 
the even modes, Modes 2, 4 and 6, have nonzero currents
at the middle of the wire. Thus the middle load, Load 3, is 
immune to coupling from the odd modes. Starting with Mode 
2, Fig. 4 shows that Mode 2 is more efficiently excited by
an excitation at incidence angles of θ = 90ᵒ and Φ = 45ᵒ (the
green curve). Fig. 3 shows that Mode 2 resonates at 0.3 GHz.
Therefore, Mode 3 should be strongly expressed in the
coupled current to Load 3 at 0.3 GHz for an incident plane
wave at angles of incidence θ = 90ᵒ and Φ = 45ᵒ. On the other
hand, Fig. 2 shows that Mode 6 resonates at 0.9 GHz and Fig.
4 shows that Mode 6 can be most efficiently excited at angles
of incidence θ = 50ᵒ and Φ = 0ᵒ. Therefore, at angles of
incidence θ = 50ᵒ and Φ = 0ᵒ maximum coupling should occur
at 0.9 GHz which is the resonance frequency of Mode 6. 

To test this hypothesis, Fig. 5 shows the coupled current to
Load 3 for two different excitations. Clearly, the current
coupled to Load 3 is maximum at 0.3 GHz when θ = 90ᵒ and
Φ = 45ᵒ, due to the strong excitation of Mode 2, and the current 
coupled to Load 3 is maximum at 0.9 GHz when θ = 50ᵒ and
Φ = 0ᵒ, due to the excitation of Mode 6.

For the terminal loads, Load 1 and Load 2, all the modes
have high current values at the load locations as shown in Fig. 
3. However, for frequencies below the resonance frequency of
the first mode, i.e., frequencies below 0.15 GHz, only Mode 1
will contribute to the current coupled to the terminal loads
because it will be the only mode that is significant as shown in
Fig. 2. Fig. 4 shows that if the incident field is exerted at θ =
90ᵒ and Φ = 90ᵒ, maximum coupling to Mode 1 will occur
which will directly maximize the coupling to the terminal 
loads. For these angles of incidence, the maximum coupling
to the terminal loads will occur at the resonance frequency of
Mode 1, 0.15 GHz, as shown in Fig. 6. As the frequency
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at both of its ends by 50 Ω loads labelled as Load 1 and Load 
2, respectively. Moreover, a third 50 Ω load, Load 3, is 
attached to the middle of the wire. In spite of the simplicity of 
the configuration in Fig. 1, it has practical relevance in a wide 
range of studies [4]–[6]. In the next Sub-section, we show how 
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different loads in Fig. 1.  
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immune to coupling from the odd modes. Starting with Mode 
2, Fig. 4 shows that Mode 2 is more efficiently excited by 
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Therefore, Mode 3 should be strongly expressed in the 
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4 shows that Mode 6 can be most efficiently excited at angles 
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incidence θ = 50ᵒ and Φ = 0ᵒ maximum coupling should occur 
at 0.9 GHz which is the resonance frequency of Mode 6.  

To test this hypothesis, Fig. 5 shows the coupled current to 
Load 3 for two different excitations. Clearly, the current 
coupled to Load 3 is maximum at 0.3 GHz when θ = 90ᵒ and 
Φ = 45ᵒ, due to the strong excitation of Mode 2, and the current 
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For the terminal loads, Load 1 and Load 2, all the modes 
have high current values at the load locations as shown in Fig. 
3. However, for frequencies below the resonance frequency of 
the first mode, i.e., frequencies below 0.15 GHz, only Mode 1 
will contribute to the current coupled to the terminal loads 
because it will be the only mode that is significant as shown in 
Fig. 2. Fig. 4 shows that if the incident field is exerted at θ = 
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increases, the higher-order modes, both odd and even, will 
start contributing to the current coupled to the terminal loads 
according to their modal significance shown in Fig. 2 and their 
modal fields in Fig. 4. The example studied in this paper shows 
the versatility of CMA in quantifying and predicting coupling. 
A similar CMA approach can be used to quantify and predict 
coupling to wire systems that are more complex than the one 
shown in Fig. 1 which will be presented at the conference. 

Fig. 1. Terminated wire above perfectly conducting ground plane. 

Fig. 2. Modal Significance of the wire configuration shown in Fig. 1. 

Fig. 3. Modal currents of the first 6 modes of the wire configuration.

Fig. 4. Modal fields of the first 6 modes of the wire configuration shown in 
Fig. 1. 

Fig. 5. Induced current on Load 3 for different field orientations. 

Fig. 6. Maximum induced current on Load 1. 

IV. CONCLUSION

A simple wire configuration with three loads was studied 
to predict and control the coupling to each load individually at 
different frequencies. Characteristic Mode Analysis (CMA) 
was applied to identify all the modes of the structure and the 
possible ways to maximize/minimize coupling to each mode. 
This study will be extended in the future to study more 
complex wire systems and experimental validations of the 
CMA predictions will be presented. 
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