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Abstract—We present and discuss acceleration of a shooting 

and bouncing rays (SBR) algorithm for ray-tracing 

electromagnetic analysis of electrically very large structures such 

as underground mine tunnels at modern wireless communication 

frequencies. The acceleration is based on the parallelization of 

the SBR technique on NVIDIA GPUs using the OptiX application 

programming interface. The results show dramatic speedups of 

the parallel SBR algorithm compared with serial implementation. 
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I. INTRODUCTION

In the field of computational electromagnetics (CEM), the 

necessity of acceleration of simulation techniques is becoming 

more and more apparent. At high frequencies especially, 

acceleration of CEM algorithms becomes vital for practicality 

of CEM solutions. Ray tracing (RT) [1]–[4] is an asymptotic 

high-frequency CEM methodology that demonstrates 

significant potential to efficiently characterize extremely large 

structures with computation times that are orders of magnitude 

shorter when compared to traditional full-wave CEM 

techniques, such as the finite element method and method of 

moments. When coupled with high-performance computing 

(HPC) strategies such as general-purpose computing on 

graphics processing units (GPGPU), simulations which would 

otherwise requires days or weeks can be condensed into 

minutes or hours. Moreover, with proper memory allocation 

and management, even low-end computing hardware can be 

leveraged for extremely rapid electromagnetic simulations and 

post-processing.  

This paper presents and discusses acceleration of a CEM 

algorithm based on shooting and bouncing rays (SBR) method 

for RT analysis of electrically very large structures such as 

underground mine tunnels at modern wireless communication 

frequencies. It highlights the parallelization of the SBR 

technique on NVIDIA GPUs using the OptiX application 

programming interface.   

II. ACCELERATION OF SBR RAY-TRACING ALGORITHM FOR

CEM MODELING 

The SBR ray-tracing algorithm [3], [4] involves spawning, 

and propagating millions of rays. These rays are traced 

geometrically through the environment, and the electric field 

is tracked as this propagation occurs. The memory and time 

requirements of tracking the information of each ray can be 

substantial on a CPU when implemented in series. The field 

contribution from each ray is linear, and thus ray tracing 

algorithms are perfect candidates for parallel computations 

on a GPU. Geometric ray propagation calculations are 

independent from one another. This means that rays can be 

traced through the environment in parallel without the need for 

synchronization. Additionally, the electric field at observation 

points is linear, meaning that the electric field calculations can 

be carried out independently per ray.  

We perform parallelization and acceleration of our SBR 

RT algorithm using the compute unified device architecture 

(CUDA) parallel computing platform as the primary language 

for parallel programming on NVIDIA GPUs. The GPUs are 

used as a tool to parallelize the core ray-tracing algorithm and 

also to provide access to the NVIDIA OptiX ray-tracing 

application programming interface (API) [5]. The OptiX API 

efficiently traces rays within complex structures. Using OptiX, 

we are able to generate information about the closest hit 

point of a ray with the geometric environment and use this 

information to reflect rays and adjust their power according to 

Fresnel’s coefficients. The combination of OptiX and CUDA 

enables quick and efficient simulations to optimize the 

placement of communication nodes within the structures under 

consideration. 

The memory requirements of the ray tracing can still be 

cumbersome due to the large number of rays and information 

associated with the simulation. The problem is alleviated by 

breaking up the ray spawning into batches. Rays are launched 

by inscribing an icosahedron into a unit sphere. The faces of 

the icosahedron are subdivided according to the nth triangular 

number so that the desired number of rays is achieved. The nth 

triangular subdivision of a face of the icosahedron is shown in 

Fig. 1. 

This helps to ensure an even distribution of rays used to 

cover the radiation pattern. The icosahedron also proves useful 

for batching. The subdivided rays on each face of the 

icosahedron make up each batch of the algorithm. Again the 

geometric and electric field ray contributions are independent, 

so splitting the algorithm into batches is not problematic. The 

algorithm is performed on each batch individually, and the 

electric field contribution of this batch at the observation 
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points is recorded. Once the batch has finished, the memory 

from these rays can be cleared before moving to the next. 

This alleviates the memory bottleneck associated with 

launching millions of rays simultaneously. If enough rays are 

launched such that these batches also experience bottlenecks, 

they can be subdivided into sub-batches and the memory 

bottleneck is again alleviated. This process can be used to 

launch and trace extremely large numbers of rays quickly and 

efficiently. 

Fig. 1. Subdivision of the icosahedron face into the nth triangular number 

(n = 4). The face is used as a batch of rays, where N = n(n+1)/2. 

This helps to ensure an even distribution of rays used to 

cover the radiation pattern. The icosahedron also proves useful 

for batching. The subdivided rays on each face of the 

icosahedron make up each batch of the algorithm. Again the 

geometric and electric field ray contributions are independent, 

so splitting the algorithm into batches is not problematic. The 

algorithm is performed on each batch individually, and the 

electric field contribution of this batch at the observation 

points is recorded. Once the batch has finished, the memory 

from these rays can be cleared before moving to the next. 

This alleviates the memory bottleneck associated with 

launching millions of rays simultaneously. If enough rays are 

launched such that these batches also experience bottlenecks, 

they can be subdivided into sub-batches and the memory 

bottleneck is again alleviated. This process can be used to 

launch and trace extremely large numbers of rays quickly and 

efficiently. 

III. RESULTS AND DISCUSSION

The acceleration of this method is tested by comparing run 

time of the accelerated parallel algorithm against a serial CPU 

implementation. The algorithm steps remain the same, so the 

comparison gives a true comparison of the speedup. Table 1 

shows the results of this comparison. The results are generated 

from a tunnel environment detailed in [6].  

When launching 10,000 rays we see a speedup of 12.36, 

which is not as substantial. Due to the fairly significant fixed 

cost associated with GPU usage, the performance of the 

parallelized code scales rapidly with increasing number of rays 

relative to the serial realization of the code. With a high ray 

count, we expect to see extremely high speedup because the 

algorithm can fully take advantage of the threads in the GPU. 

Indeed, at one million rays and 100 million rays, respectively, 

we see a speedup of over 130 times.   

Table 1: Speedup of the parallel SBR algorithm compared with serial 
implementation for a RT simulation of a tunnel environment 

IV. CONCLUSIONS

This paper has presented acceleration of an SBR RT 

algorithm for CEM analysis based on the parallelization of the 

SBR technique on NVIDIA GPUs using the OptiX application 

programming interface. Accurate simulations in electrically 

large and complex geometric environments, such as 

underground mine tunnels and galleries in wireless 

communication applications, will certainly necessitate the use 

of extremely large numbers of rays to adequately sample the 

environment. Based on the results presented in this paper, the 

presented algorithm proves to be very beneficial for these 

types of simulations.  
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