
Shooting-Bouncing-Rays Technique to Model Mine
Tunnels: Algorithm Acceleration

Stephen Kasdorf, Blake Troksa, Jake Harmon, Cam Key, and Branislav M. Notaroš
Colorado State University, Electrical & Computer Engineering Department, Fort Collins, CO

skasdorf@rams.colostate.edu, blake.troksa@gmail.com, J.Harmon@colostate.edu, camkey@rams.colostate.edu,

notaros@colostate.edu

Abstract—We present and discuss acceleration of a shooting

and bouncing rays (SBR) algorithm for ray-tracing

electromagnetic analysis of electrically very large structures such

as underground mine tunnels at modern wireless communication

frequencies. The acceleration is based on the parallelization of

the SBR technique on NVIDIA GPUs using the OptiX application

programming interface. The results show dramatic speedups of

the parallel SBR algorithm compared with serial implementation.

Keywords—computational electromagnetics, GPU acceleration,

graphics processing units, high-frequency techniques, high

performance computing, parallelization, ray tracing, signal

propagation, waveguides, wireless communications.

I. INTRODUCTION

In the field of computational electromagnetics (CEM), the

necessity of acceleration of simulation techniques is becoming

more and more apparent. At high frequencies especially,

acceleration of CEM algorithms becomes vital for practicality

of CEM solutions. Ray tracing (RT) [1]–[4] is an asymptotic

high-frequency CEM methodology that demonstrates

significant potential to efficiently characterize extremely large

structures with computation times that are orders of magnitude

shorter when compared to traditional full-wave CEM

techniques, such as the finite element method and method of

moments. When coupled with high-performance computing

(HPC) strategies such as general-purpose computing on

graphics processing units (GPGPU), simulations which would

otherwise requires days or weeks can be condensed into

minutes or hours. Moreover, with proper memory allocation

and management, even low-end computing hardware can be

leveraged for extremely rapid electromagnetic simulations and

post-processing.

This paper presents and discusses acceleration of a CEM

algorithm based on shooting and bouncing rays (SBR) method

for RT analysis of electrically very large structures such as

underground mine tunnels at modern wireless communication

frequencies. It highlights the parallelization of the SBR

technique on NVIDIA GPUs using the OptiX application

programming interface.

II. ACCELERATION OF SBR RAY-TRACING ALGORITHM FOR

CEM MODELING

The SBR ray-tracing algorithm [3], [4] involves spawning,

and propagating millions of rays. These rays are traced

geometrically through the environment, and the electric field

is tracked as this propagation occurs. The memory and time

requirements of tracking the information of each ray can be

substantial on a CPU when implemented in series. The field

contribution from each ray is linear, and thus ray tracing

algorithms are perfect candidates for parallel computations

on a GPU. Geometric ray propagation calculations are

independent from one another. This means that rays can be

traced through the environment in parallel without the need for

synchronization. Additionally, the electric field at observation

points is linear, meaning that the electric field calculations can

be carried out independently per ray.

We perform parallelization and acceleration of our SBR

RT algorithm using the compute unified device architecture

(CUDA) parallel computing platform as the primary language

for parallel programming on NVIDIA GPUs. The GPUs are

used as a tool to parallelize the core ray-tracing algorithm and

also to provide access to the NVIDIA OptiX ray-tracing

application programming interface (API) [5]. The OptiX API

efficiently traces rays within complex structures. Using OptiX,

we are able to generate information about the closest hit

point of a ray with the geometric environment and use this

information to reflect rays and adjust their power according to

Fresnel’s coefficients. The combination of OptiX and CUDA

enables quick and efficient simulations to optimize the

placement of communication nodes within the structures under

consideration.

The memory requirements of the ray tracing can still be

cumbersome due to the large number of rays and information

associated with the simulation. The problem is alleviated by

breaking up the ray spawning into batches. Rays are launched

by inscribing an icosahedron into a unit sphere. The faces of

the icosahedron are subdivided according to the nth triangular

number so that the desired number of rays is achieved. The nth

triangular subdivision of a face of the icosahedron is shown in

Fig. 1.

This helps to ensure an even distribution of rays used to

cover the radiation pattern. The icosahedron also proves useful

for batching. The subdivided rays on each face of the

icosahedron make up each batch of the algorithm. Again the

geometric and electric field ray contributions are independent,

so splitting the algorithm into batches is not problematic. The

algorithm is performed on each batch individually, and the

electric field contribution of this batch at the observation

This work was supported by the National Science Foundation under grant
ECCS

-

1646562

.

ACES JOURNAL, Vol. 35, No. 11, November 2020

Submitted On: September 9, 2020
Accepted On: September 9, 2020 1054-4887 © ACES

https://doi.org/10.47037/2020.ACES.J.351134

1330

points is recorded. Once the batch has finished, the memory

from these rays can be cleared before moving to the next.

This alleviates the memory bottleneck associated with

launching millions of rays simultaneously. If enough rays are

launched such that these batches also experience bottlenecks,

they can be subdivided into sub-batches and the memory

bottleneck is again alleviated. This process can be used to

launch and trace extremely large numbers of rays quickly and

efficiently.

Fig. 1. Subdivision of the icosahedron face into the nth triangular number

(n = 4). The face is used as a batch of rays, where N = n(n+1)/2.

This helps to ensure an even distribution of rays used to

cover the radiation pattern. The icosahedron also proves useful

for batching. The subdivided rays on each face of the

icosahedron make up each batch of the algorithm. Again the

geometric and electric field ray contributions are independent,

so splitting the algorithm into batches is not problematic. The

algorithm is performed on each batch individually, and the

electric field contribution of this batch at the observation

points is recorded. Once the batch has finished, the memory

from these rays can be cleared before moving to the next.

This alleviates the memory bottleneck associated with

launching millions of rays simultaneously. If enough rays are

launched such that these batches also experience bottlenecks,

they can be subdivided into sub-batches and the memory

bottleneck is again alleviated. This process can be used to

launch and trace extremely large numbers of rays quickly and

efficiently.

III. RESULTS AND DISCUSSION

The acceleration of this method is tested by comparing run

time of the accelerated parallel algorithm against a serial CPU

implementation. The algorithm steps remain the same, so the

comparison gives a true comparison of the speedup. Table 1

shows the results of this comparison. The results are generated

from a tunnel environment detailed in [6].

When launching 10,000 rays we see a speedup of 12.36,

which is not as substantial. Due to the fairly significant fixed

cost associated with GPU usage, the performance of the

parallelized code scales rapidly with increasing number of rays

relative to the serial realization of the code. With a high ray

count, we expect to see extremely high speedup because the

algorithm can fully take advantage of the threads in the GPU.

Indeed, at one million rays and 100 million rays, respectively,

we see a speedup of over 130 times.

Table 1: Speedup of the parallel SBR algorithm compared with serial
implementation for a RT simulation of a tunnel environment

IV. CONCLUSIONS

This paper has presented acceleration of an SBR RT

algorithm for CEM analysis based on the parallelization of the

SBR technique on NVIDIA GPUs using the OptiX application

programming interface. Accurate simulations in electrically

large and complex geometric environments, such as

underground mine tunnels and galleries in wireless

communication applications, will certainly necessitate the use

of extremely large numbers of rays to adequately sample the

environment. Based on the results presented in this paper, the

presented algorithm proves to be very beneficial for these

types of simulations.

REFERENCES

[1] M. F. Cátedra and J. Perez, Cell Planning for Wireless Communications.
Norwood, MA, USA: Artech House, 1999.

[2] Z. Yun, M. F. Iskander and Z. Zhang, “Development of a New Shooting-
and-bouncing Ray (SBR) Tracing Method that Avoids Ray Double
Counting,” IEEE Antennas and Propagation Society International
Symposium, 2001 Digest. Boston, MA, USA, 2001, pp. 464-467.

[3] B. Troksa, C. Key, F. Kunkel, S. V. Savic, M. M. Ilic, and B. M.
Notaros, “Ray Tracing Using Shooting-Bouncing Technique to Model
Mine Tunnels: Theory and Verification for a PEC Waveguide,”
Proceedings of the 2018 International Applied Computational
Electromagnetics Society (ACES) Symposium – ACES2018, Mar. 25–
29, 2018, Denver, Colorado, USA.

[4] C. Key, B. Troksa, F. Kunkel, S. V. Savić, M. M. Ilic, and B. M.
Notaroš, “Comparison of Three Sampling Methods for Shooting-
Bouncing Ray Tracing Using a simple Waveguide Model,” 2018 IEEE
International Symposium on Antennas and Propagation & USNC/URSI
National Radio Science Meeting, Boston, MA, 2018, pp. 2273-2274.

[5] S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D.
Luebke, D. McAllister, M. McGuire, K. Morley, A. Robison, and M.
Stich, “OptiX: A general purpose ray tracing engine,” ACM Trans.
Graph., vol. 29, no. 4, Article 66, July 2010.

[6] D. Didascalou, “Ray Optical Wave Propagation Modelling in Arbitrarily
Shaped Tunnels,” Forschungsberichte aus dem Institut für
Höchstfrequenztechnik und Elektronik der Universität Karlsruhe, vol.
24, Institut für Höchstfrequenztechnik und Elektronik, Universität
Karlsruhe, 2000.

 KASDORF, TROKSA, HARMON, KEY, NOTAROŠ: SHOOTING-BOUNCING-RAYS TECHNIQUE TO MODEL MINE TUNNELS1331

	Article 91.pdf
	I. Introduction
	II. Design of a Varifocal Metalens
	References

	Article 55.pdf
	I. Introduction
	II. Motor Drive System Characterization Module
	III. The Taguchi-EM-PSO Design Envirnoment
	Initial and Optimal Design
	IV. Conclusion
	References

	Article 54.pdf
	I. Introduction
	II. IM Drive System under Study
	III. FEA Model Results
	A. Details of the Motor
	B. FEA Results

	IV. Conclusion

	Article 46.pdf
	I. Introduction
	II. Modeling of Non-Ideal Cable Shield Connections
	III. Parallel Direct ACA Solver
	IV. RL-GO Edge and Wedge Diffraction
	V. Automotive Radar
	References

	Article 9.pdf
	I. INTRODUCTION
	II. SHAPE SYNTHESIS TECHNIQUE AND IMPLEMENTATION
	III. DESIGN EXAMPLE
	REFERENCES

 HistoryItem_V1
 AddNumbers

 Range: all odd numbered pages
 Font: Times-Roman (unembedded) 8.0 point
 Origin: top right
 Offset: horizontal 43.20 points, vertical 26.64 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20210122154821

 1
 1

 TR

 1
 1
 1
 0
 0
 1264
 TR
 1
 0
 0
 435
 74
 0
 1
 R0
 8.0000

 Odd
 7
 AllDoc
 174

 CurrentAVDoc

 [Sys:ComputerName]
 43.2000
 26.6400

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0m
 Quite Imposing Plus 4
 1

 0
 191
 190
 db184e26-052b-4cd4-989d-0b3e02d0f8e6
 96

 1

 HistoryItem_V1
 AddNumbers

 Range: all even numbered pages
 Font: Times-Roman (unembedded) 8.0 point
 Origin: top left
 Offset: horizontal 43.20 points, vertical 26.64 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20210122154828

 1
 1

 TL

 1
 1
 1
 0
 0
 1264
 TR
 1
 0
 0
 435
 74

 0
 1
 R0
 8.0000

 Even
 7
 AllDoc
 174

 CurrentAVDoc

 [Sys:ComputerName]
 43.2000
 26.6400

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0m
 Quite Imposing Plus 4
 1

 0
 191
 189
 1ad0ed6e-3cbe-4c74-9d20-e6d446af96b6
 95

 1

 HistoryList_V1
 qi2base

