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Abstract—A procedure for rapid EM-based multi-objective 

optimization of compact microwave components is presented. 

Our methodology employs a recently developed nested kriging 
modelling to identify the search space region containing the 

Pareto-optimal designs, and to construct a fast surrogate model. 

The latter permits determination of the initial Pareto set, further 

refined using a separate surrogate-assisted process. As an 
illustration, a three-section impedance transformer is designed 

for the best matching and minimum size. The set of trade-off 

designs is produced at the low computational cost of only a few 
hundred of high-fidelity EM simulations of the transformer 

circuit despite a large number of its geometry parameters. 

Keywords—Microwave optimization, multi-objective design, 

simulation-driven design, surrogate modelling. 

I. INTRODUCTION

Circuit miniaturization has become a common trend in 
the design of microwave components [1]. Unfortunately, size 
reduction normally stays in conflict with ensuring desired 
electrical performance. Finding available design trade-offs can 
be realized through multi-objective optimization (MO) [2]. 
MO is a computationally expensive task, because reliable 
evaluation of compact structures requires full-wave 
electromagnetic (EM) analysis [3]. At the same time, the most 
popular MO techniques (population-based metaheuristics, e.g., 
particle swarm optimizers [4]) are computationally inefficient.  

In this paper, a novel technique for MO of compact 
microwave components is presented, capitalizing on a recently 
reported nested kriging modeling paradigm [5]. The latter 
permits identification of the search space region containing the 
Pareto set and to set up, therein, a fast surrogate further 
utilized to yield an initial approximation of the trade-off 
designs. The procedure is supplemented with a surrogate-
assisted refinement routine. Despite of using a single-level 
(high-fidelity) EM model only throughout the process and 
handling a large number of parameters, our framework is 
demonstrated to render the Pareto set at a low CPU cost. 

II. MULTI-OBJECTIVE DESIGN BY NESTED KRIGING 

A goal of MO is to determine a set of globally non-
dominated designs representing the best possible trade-offs 
w.r.t. the objectives Fk, k = 1, …, N [2], all to be minimized.
The MO process may be sped up by optimizing directly a
faster surrogate model Rs, instead of the EM-simulated (fine)
model R(x) (x denotes the parameter vector), being the
primary way of system evaluation. Due to a limited accuracy
of the surrogate, the initial Pareto-optimal designs xs

(k) have to
be refined as follows:
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where the last term represents output space mapping correction 
[7]. In this work, the surrogate is constructed using a recently 
reported nested kriging modelling approach [5], here, adopted 
to represent the system responses in the region containing the 
Pareto set. Let x(j), j = 1, …, p, denote the reference designs 
optimized w.r.t. the performance vectors F(j) = [F1

(j) … FN
(j)], 

with x(j) = [x1
(j) … xn

(j)]T. The objective space Φ is defined by 

the ranges Fk.min  Fk
(j)  Fk.max, k = 1, …, N. The reference 

designs need to include the extreme designs x*(k) = argmin{x : 
Fk(R(x))} (and other designs from the Pareto front if more 
detailed information is needed). These are obtained by solving: 
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subject to Fj(x)  l wl Fj(x*(l)), j = 2, …, N; w = [w1 … wN]T is 

a vector of weights; 0  wj  1 and j wj = 1. The objective 
vector F(w) refers to the reference design xw; w = 
[0 … 1 … 0]T (with 1 on the k-th position) corresponds to a 
single-objective design x*(k). To handle the objective space 
region spanned by the reference designs an auxiliary mapping 

h0 from a unit N – 1 simplex SN–1 = {z = [z1 … zN–1]T : 0  zk 

 1 and k = 1,…,N–1zk  1} onto the space of the weights w is 
used. If N = 2 (the case considered in the paper), the mapping 

h0 is defined as (generalization for N > 2 is straightforward): 
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Fig. 1 provides a graphical illustration of the above concepts for 
N = 2. The nested kriging model is to be established in the 
marked part of the objective space. As the number of available 
reference designs is in practice limited, these designs merely 
approximate the Pareto front geometry. Hence, a certain 
extension is necessary. The extended region O is defined as the 

set of all points w = h0(z)(1 + d) with z  SN–1 and –dw  d  dw, 
where dw is the extension factor (here, dw = 0.05 is used). 

The actual modelling procedure involves two surrogates. 

The first-level model sI(Φ)  X (kriging model [6]; with 
{F(j),x(j)} being the training points) maps Φ into the design 
space X, and it is the first approximation of the surrogate model 
domain. The sI(Φ) is then orthogonally extended towards its 
normal vectors [5] vn

(k)(F), k = 1, …, n – N, to ensure that all 
designs optimal w.r.t. Fk, are comprised in the model domain. 
Let us define: xmax = max{x(k), k = 1, …, p}, xmin = min{x(k), k = 
1, …, p}, xd = xmax – xmin, along with the extension coefficients: 

  ( )

1,..., 1,...,
( ) ( ) 0.5 | ( ) | ,

TT k

k d nk n N k n N
 

   
    α F F x v F  (4) 

ACES JOURNAL, Vol. 35, No. 11, November 2020

Submitted On: September 9, 2020 
Accepted On: September 9, 2020 1054-4887 © ACES

https://doi.org/10.47037/2020.ACES.J.351141

1344



where τ is a user-defined thickness parameter. The surrogate 
model domain XS is located between the manifolds M+ and M–, 

determined by the coefficients k: 
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Using (5), we define XS as (cf. [5]): 
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The first-level surrogate comprises two transformations: 

(i) the mapping h0 from the Cartesian product of SN–1  [–dw,
dw] onto the objective space region O and (ii) the mapping sI

from O into X (merely used for the sake of convenience, as it is

easier to implement uniform data sampling on SN–1  [–dw, dw]
rather than directly on O). The second-level surrogate is then
set up in the orthogonally extended domain sI(O).

III. VERIFICATION EXAMPLES

The optimization framework is illustrated using a CMRC-

based three-section transformer [7] of Fig. 2, implemented on 

Taconic RF-35 substrate (εr = 3.5, h = 0.762 mm), and described 

by the parameters x = [l1.1 l1.2 w1.1 w1.2 w1.0 l2.1 l2.2 w2.1 w2.2 w2.0 

l3.1 l3.2 w3.1 w3.2 w3.0]T. The operating range is 1.75 GHz to 4.25 

GHz. The figures of interest are: minimization of the in-band 

reflection (F1) and minimization of the footprint area (F2). The 

computational model R is simulated in CST Microwave Studio 

(~280,000 mesh cells, simulation time 2.5 min). Four reference 

designs are used, corresponding to the two single-objective 

designs and two more for z = 0.33 and z = 0.66 (cf. (3)).  
The nested kriging surrogate was set using only 200 data 

samples. Its average RMS error is only 4.1%. For comparison, the 
surrogate was constructed within the reduced interval l* = 
min{x*(1), x*(2)} and u* = max{x*(1), x*(2)}, typically containing the 
vast majority of the Pareto front [2]. Although 1600 training 
samples were used, the model error is 10.4%. The initial Pareto 
set was obtained by multi-objective evolutionary algorithm 
(MOEA) [7]. The selected Pareto-optimal designs, before and 
after refinement are shown in Fig. 3 (a). The reflection 
characteristics for the selected designs are presented in Fig. 3 (b). 
Table I contains the breakdown of the optimization cost. The 
presented approach offers several advantages: (i) the optimization 
cost, mostly incurred by training data acquisition for setting up 
the surrogate model, is considerably reduced (by around 65 
percent), (ii) the overall MO cost is just 745 EM simulations, and 
(iii) more precise identification of the initial Pareto set can be
obtained (owing to a considerably smaller domain of the nested
kriging model and better predictive power of the surrogate).
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Fig. 1. Objective space Φ and the objective vectors representing selected 

reference designs; the region of the objective space for setting up the second-

level model is marked using dotted lines; the mapping h0 maps the unity simplex 
onto the relevant portion of the objective space region (two-objective case). 

lk.1

lk.2

wk.1

wk.2

wk.0

   (a)   (b) 

Fig. 2. CMRC-based three-section impedance matching transformer: (a) 
compact microstrip resonant cell (CMRC) cell; and (b) transformer geometry. 

  (a) 

  (b) 

Fig. 3. (a) Pareto-optimal solutions: (o) initial set obtained with MOEA, 

(*) selected designs for refinement, () EM-simulated selected designs, (O) EM-
simulated refined designs; (b) reflection characteristics of the transformer for 

selected Pareto-optimal designs. 

TABLE I.  OPTIMIZATION COST BREAKDOWN 

Cost Item 
Surrogate Model Domain 

XS (this work) Hypercube [l*,u*] 

Extreme points 515  R 515  R 

Data acquisition for kriging surrogate 200  R 1600  R 

MOEA optimization* N/A N/A 

Refinement 30  R 30  R 

Total cost# 745  R (31 h) 2145  R (89 h) 
* The cost of MOEA optimization is negligible compared to other stages of the process.
# The total cost (equivalent number of EM simulations; CPU time shown in brackets).
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