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Abstract—We consider direction of arrival (DOA) estimation
from long-term observations in a noisy environment. In such an
environment the noise source might evolve, causing the stationary
models to fail. Therefore a heteroscedastic Gaussian noise model
is introduced where the variance can vary across observations
and sensors. The source amplitudes are assumed independent
zero-mean complex Gaussian distributed with unknown variances
(i.e., source powers), leading to stochastic maximum likelihood
(ML) DOA estimation. The DOAs are estimated from multi-
snapshot array data using sparse Bayesian learning (SBL) where
the noise is estimated across both sensors and snapshots.

Index Terms—Heteroscedastic noise, sparse reconstruction.

I. INTRODUCTION

With long observation times, parameters of weak signals can
be estimated in a noisy environment. Most analytic treatments
analyze these cases assuming Gaussian noise with constant
variance. For long observation times the noise process is likely
to change with time leading to an evolving noise variance. This
is called a heteroscedastic Gaussian process. While the noise
variance is a nuisance parameter, it still needs to be estimated
or included in the processing in order to obtain an accurate
estimate of the parameters of the weak signals.

We resolve closely spaced weak sources when the noise
power is varying in space and time. Specifically, we derive
noise variance estimates and demonstrate this for compressive
beamforming [1]-[4] using multiple measurement vectors
(MMYV or multiple snapshots). We solve the MMV problem
using sparse Bayesian learning (SBL) [2], [5], [6]. Further
details is in the paper [7] and demonstrated on real data [8].

We base our development on our fast SBL method [5],
[6] which simultaneously estimates noise variances as well as
source powers. For the heteroscedastic noise considered here,
there could potentially be as many unknown variances as the
number of observations. We estimate the unknown variances
using approximate stochastic ML [9], [10] modified to obtain
noise estimates even for a single observation.

Let X = [x1,...,x1] € CM*L be the complex source
amplitudes, Z,; = [X]|m,1 = [Xi]m withm € {1,--- M} and
le{l,---,L}, at M DOAs (e.g., 0, = —90° + Z-L180°)
and L snapshots for a frequency w. We observe narrowband
waves on N sensors for L snapshots Y = [y1,...,yr] €
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CN*L_ A linear regression model relates the array data Y to
the source amplitudes X as:

Y = AX +N. (1

The dictionary A=l[ay,...,ap;]€ECY*M contains the array
steering vectors for all hypothetical DOAs as columns, Further,
n; € CV is additive zero-mean circularly symmetric complex
Gaussian noise, which is generated from a heteroscedastic
Gaussian process n; ~ CN(ny;0,X,,). We assume that the
covariance matrix is diagonal and parameterized as:

N
2 . 2 2
Enl = § :Un,lJ7l = dlag(gl,la T UN,l))

n=1

2

where J,, = diag(e,) = e,el with e, the nth standard basis
vector. Note that the covariance matrices X,,, are varying over
the snapshot index | = 1,...,L. The set of all covariance
matrices are ¥ = {Xy,,..., Xn, - We consider three cases
for the a priori knowledge on the noise covariance model (2):
I: We assume wide-sense stationarity of the noise in space and
time: 02, = o = const. The model is homoscedastic.

II: We assume wide-sense stationarity of the noise in space
only, i.e., the noise variance for all sensor elements is equal
across the array, o ; = o ; and it varies over snapshots. The
noise variance is heteroscedastic in time (across snapshots).
III: No additional constraints other than (2). The noise vari-
ance is heteroscedastic across both time and space (sensors
and snapshots.)

We assume M >N and thus (1) is underdetermined. In the
presence of only few stationary sources, the source vector x;
is K -sparse with K <M. We define the [th active set M; =
{m € N|z,; # 0}, and assume M;=M={my,...mg} is
constant across all snapshots [. Also, we define A g cCNxK
which contains only the K “active” columns of A.

We assume that the complex source amplitudes x,,; are in-
dependent both across snapshots and across DOAs and follow
a zero-mean circularly symmetric complex Gaussian distribu-
tion with DOA-dependent variance ,,, m = 1,..., M,

5(z7nl)7 for Ym = 0
P(Emi; Ym) = ﬁe*“’mlw”m for v, >0 7 @)
L M L
pXsy) =[] I p@mi;vm) = [[CN(x;50,T), 4
I=1m=1 =1
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Fig. 1. Single source at DOA —3°, array SNR = 0 dB, noise standard
deviation statistics: (a) true noise parameters, (b) average estimated noise
parameters from SBL (100 simulations), (c) a typical SBL estimate, and (d)
average across simulations and snapshots.

i.e., the source vector x; at each snapshot (€{1,---)L} is mul-
tivariate Gaussian with potentially singular covariance matrix,

I = diag(y) = E[xix;";], (5)

as rank(T")=card(M)=K <M (typically K < M). Note that
the diagonal elements of T, i.e., y>0, represent source powers.
When the variance ~,,=0, then x,,;=0 with probability 1.
This likelihood function is identical to the Type II likelihood
function (evidence) in standard SBL [2], [5] which is obtaip\ed
by treating <y as a hyperparameter. The estimates 4 and X
are obtained by maximizing the likelihood,

(7, ¥n) = arg maxlog p(Y;7, In). (6)

720, N
The goal is thus to solve (6) and the active DOAs M is where
4 > 0. The SBL algorithm solves (6) by iterating between
the source power estimates 4 derived in this section and the
noise variance estimates x. Assuming 724 and 3, given

(from previous iterations) we obtain the following fixed point
iteration for the ~v,, [5] (b= 0.5):

L _
,ynew _ ,yold Zl:l |ylH2yzlam|2
m - I'm L —
> all>y'a,,

II. EXAMPLE

)

An example statistic of the heteroscedastic noise standard
deviation is shown in Fig. 1 for a 20 element array with a
single source. The standard deviation for each sensor is either
0 or /2 (Fig. 1(a).) The estimates of the standard deviation
are in Figs. 1(b), 1(c). Average of estimated noise (Fig. 1(b))
resembles well the true noise (Fig. 1(a)) whereas the sample
standard deviation estimate (Fig. 1(c)) has high variability—
each estimate is based on just one observation. Given many
simulations and snapshots, however, the mean of the estimated
standard deviation is close to the true noise (Fig. 1(d)). Three
noise cases are simulated: (a) Noise Case I: constant noise
standard deviation over snapshots and sensors, (b) Noise Case
II: standard deviation changes across snapshots with log;,0;~
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Fig. 2. Root mean squared error (RMSE) vs. SNR with the three sources
at {—3°,2°,50°} and power {10, 22,20} dB. The RMSE is evaluated over
100 noise realizations.

U(—1,1), and (c) Noise Case III: standard deviation changes
across both snapshots and sensors with logygoy, ;~U(—1,1).
In Fig. 2, we consider three sources located at [—3, 2, 50]°
with power [10,22,20] dB. The complex source amplitude is
stochastic and there is additive heteroscedastic Gaussian noise
with SNR variation from —35 to 10 dB. The N=20 elements
sensor array with half-wavelength spacing observe L=50
snapshots. The angle space grid [—90:0.5:90]° (M =360). The
single-snapshot array signal-to-noise ratio (SNR) is SNR=
10log ;o [E{[|Ax[|3}/E{|n;[|3}]. The simulation shows that
for Noise Case III (Fig. 2(c)) best results are obtained when
estimating the full noise covariance matrix (green line, SBL3).
Thus, the simulation demonstrates that estimating the noise
carefully gives improved DOA estimation at low SNR.

REFERENCES

[1]1 A. Xenaki, P. Gerstoft, and K. Mosegaard, “Compressive beamforming,”
J. Acoust. Soc. Am., 136(1):260-271, 2014.

[2] D. P. Wipf and B. D. Rao, “An empirical Bayesian strategy for solving
the simultaneous sparse approximation problem,” [EEE Trans. Signal
Process., 55(7):3704-3716, 2007.

[3] P. Gerstoft, A. Xenaki, and C. F. Mecklenbriuker. “Multiple and single
snapshot compressive beamforming,” J. Acoust. Soc. Am., 138(4):2003—
2014, 2015.

[4] P. Gerstoft, C. F. Mecklenbriduker, W. Seong, and M. J. Bianco, “In-
troduction to compressive sensing in acoustics,” J. Acoust. Soc. Am.,
143:3731-3736, 2018.

[5] P. Gerstoft, C. F. Mecklenbrduker, A. Xenaki, and S. Nannuru, “Mul-
tisnapshot sparse Bayesian learning for DOA’, IEEE Signal Process.
Lett., 23(10):1469-1473, 2016.

[6] S. Nannuru, K. L Gemba, P. Gerstoft, W. S. Hodgkiss, and C. F.
Mecklenbriuker, “Sparse Bayesian learning with multiple dictionaries,”
Signal Processing, 159:159-170, 2019.

[71 P. Gerstoft, S. Nannuru, C. F. Mecklenbriuker, and G. Leus, “DOA
estimation in heteroscedastic noise,” Signal Processing, 161:63-73,
2019.

[8] K. L. Gemba, S. Nannuru, and P. Gerstoft, “Robust ocean acoustic
localization with sparse Bayesian learning,” IEEE J Sel. Topics Signal
Process., 13:49-60, 2019.

[9] J. E. Bohme. “Source-parameter estimation by approximate maximum
likelihood and nonlinear regression,” IEEE J. Oceanic Eng., 10(3):206—
212, 1985.

[10] P. Stoica and A. Nehorai, “On the concentrated stochastic likelihood
function in array processing,” Circuits Syst. Signal Process., 14(5):669—
674, 1995.



	Article 91.pdf
	I. Introduction
	II. Design of a Varifocal Metalens
	References


	Article 55.pdf
	I. Introduction
	II. Motor Drive System Characterization Module
	III. The Taguchi-EM-PSO Design Envirnoment
	Initial and Optimal Design
	IV. Conclusion
	References

	Article 54.pdf
	I. Introduction
	II. IM Drive System under Study
	III. FEA Model Results
	A. Details of the Motor
	B. FEA Results

	IV. Conclusion

	Article 46.pdf
	I. Introduction
	II. Modeling of Non-Ideal Cable Shield Connections
	III. Parallel Direct ACA Solver
	IV. RL-GO Edge and Wedge Diffraction
	V. Automotive Radar
	References


	Article 9.pdf
	I. INTRODUCTION
	II. SHAPE SYNTHESIS TECHNIQUE AND IMPLEMENTATION
	III. DESIGN EXAMPLE
	REFERENCES



 
 
    
   HistoryItem_V1
   AddNumbers
        
     Range: all odd numbered pages
     Font: Times-Roman (unembedded) 8.0 point
     Origin: top right
     Offset: horizontal 43.20 points, vertical 26.64 points
     Prefix text: ''
     Suffix text: ''
     Colour: Default (black)
     Add text every 0 pages
      

        
     D:20210122154821
      

        
     1
     1
     
     TR
     
     1
     1
     1
     0
     0
     1264
     TR
     1
     0
     0
     435
     74
     0
     1
     R0
     8.0000
            
                
         Odd
         7
         AllDoc
         174
              

       CurrentAVDoc
          

     [Sys:ComputerName]
     43.2000
     26.6400
      

        
     QITE_QuiteImposingPlus4
     Quite Imposing Plus 4.0m
     Quite Imposing Plus 4
     1
      

        
     0
     191
     190
     db184e26-052b-4cd4-989d-0b3e02d0f8e6
     96
      

   1
  

    
   HistoryItem_V1
   AddNumbers
        
     Range: all even numbered pages
     Font: Times-Roman (unembedded) 8.0 point
     Origin: top left
     Offset: horizontal 43.20 points, vertical 26.64 points
     Prefix text: ''
     Suffix text: ''
     Colour: Default (black)
     Add text every 0 pages
      

        
     D:20210122154828
      

        
     1
     1
     
     TL
     
     1
     1
     1
     0
     0
     1264
     TR
     1
     0
     0
     435
     74
    
     0
     1
     R0
     8.0000
            
                
         Even
         7
         AllDoc
         174
              

       CurrentAVDoc
          

     [Sys:ComputerName]
     43.2000
     26.6400
      

        
     QITE_QuiteImposingPlus4
     Quite Imposing Plus 4.0m
     Quite Imposing Plus 4
     1
      

        
     0
     191
     189
     1ad0ed6e-3cbe-4c74-9d20-e6d446af96b6
     95
      

   1
  

 HistoryList_V1
 qi2base





