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Abstract ─ A novel closed-form high-order small 

perturbation method (HOSPM) for the analysis of 

scattering from 1-D conducting random rough surfaces 

under TE incidence is developed. The main theoretical 

contributions of the HOSPM are as follows: (1) our 

method yields a general high-order SPM form for 

scattered fields of arbitrary orders, (2) Faà di Bruno's 

formula is introduced into computational 

electromagnetics (CEM) for the first time to expand a 

tapered incident wave and its partial derivatives in power 

series form, and (3) the form is simple and easy to 

program and does not require any mathematical 

pretreatment. Comparisons are made between the method 

of moments (MOM) and different-order HOSPMs in 

terms of several aspects, including accuracy and time 

efficiency. The order convergence of the HOSPM is 

discussed, the regions of validity with regard to 

correlation lengths and root mean square (RMS) heights 

are demonstrated for the 2nd-order HOSPM, and the 

robustness of the 2nd-order HOSPM is proven over a 

broad range of frequencies. 

Index Terms ─ Bistatic scattering coefficients, high-

order small perturbation method, rough surface scattering, 

tapered wave, TE incidence. 

I. INTRODUCTION
The scattering of EM waves from a random rough 

surface has been an important subject of research in 

recent decades because of its important applications in 

many diverse fields, including electromagnetic scattering 

[1-3], remote sensing [4], oceanography [5], 

communications [6], materials science [7-8], medical 

imaging [9] and applied optics [10-11]. Methods of 

studying rough surface scattering can be categorized into 

three groups: (1) approximation and analytical methods, 

(2) numerical methods and (3) semi-analytical methods.

Approximation methods are based on physical

approximations and are aimed at providing closed-form 

formulae for the scattered fields. The basic idea of 

numerical methods is to discretize the continuous 

variable and continuous functions, convert the differential 

equations into the difference equations, convert the 

integral equations to the form of finite sum, establish the 

convergent algebraic equations, and use the computer 

technology to solve the problem. Semi-analytical 

methods are a combination of numerical methods and 

analytical methods. The main principle of the semi-

analytical methods is to reduce the dimension of 

multidimensional problems by using the family of low-

dimensional solutions so as to simplify the calculation. 

The small perturbation method (SPM) is a classic 

approximation method for rough surface with small-

scale roughness [12-14]. The SPM produces a series 

expansion in the surface heights for a scattered field. 

There are two classic approaches to the SPM. The first 

one is based on the extended boundary condition (EBC) 

method. The surface currents on the rough surface  

are first calculated by applying the extinction theorem. 

The scattered fields can then be calculated from the 

diffraction integrals of the surface fields. The second 

approach makes use of the Rayleigh hypothesis to 

express the reflected and transmitted fields as upward- 

and downward-going waves, respectively. The field 

amplitudes are then determined from the boundary 

conditions [15]. Both perturbation methods yield the 

same expansion for the scattered fields. 

There have been many quantitative studies aimed at 

analysis and applications of different-order SPMs. The 

first-order SPM has been used to predict scattering 

from multilayer stacks, especially light scattering 

from multilayer optical coatings [16-17]. The Born-

approximation first-order SPM is frequently applied to 

high-frequency scattering from marine sediments [18]. 

In the original paper [19], scattered fields of up to second 

order in surface height were considered for scattering 

ACES JOURNAL, Vol. 35, No. 6, June 2020

Submitted On: December 30, 2019 
Accepted On: May 4, 2020 1054-4887 © ACES

601



from 2-D random rough surfaces. In [20], scattered fields 

were derived to third order in the surface height, and 

expressions for the scattered and transmitted powers 

were developed for deterministic and stochastic surfaces 

as well as periodic and nonperiodic surfaces. The fourth-

order SPM was investigated with regard to scattering 

from two rough surfaces in a layered geometry in [21]. 

Most SPM studies can only supply solutions in the 

form of limited series. Usually, as series order increases, 

the integral dimensionality increases. The necessary 

calculations are complicated to code when they involve 

multiple integrals. Because high-order mathematical 

forms are always complex and difficult to program, there 

is no general form for an SPM of arbitrary orders. In 

order to solve these problems, this paper presents a semi-

analytical version of the SPM for arbitrary orders, such 

that the highest order of the method can even be infinite. 

Therefore, the proposed method is called the high-order 

SPM (HOSPM). In this method, a tapered incident wave 

is used to avoid “edge diffraction”. Because the incident 

wave should also be expended in series form, another 

new consideration in the HOSPM is the introduction of 

Faà di Bruno's formula to expand a tapered incident 

wave and its partial derivatives in power series form. 

This is the first time that Faà di Bruno's formula has been 

used in CEM. 

There are several differences between the classic 

SPM and our method. (1) The classic SPM makes use of 

the Rayleigh hypothesis. Our method is based on the 

Ewald-Oseen extinction theorem [22]. (2) Although both 

methods use Taylor series to expand the scattered and 

incident fields, the spectral amplitude inside the Fourier 

transform is expanded in series form in the classic SPM, 

whereas the total field is expanded into a Taylor series in 

our method. (3) In the classic SPM, the scattered fields 

are classified as either coherent or incoherent waves. In 

our method, this classification is not needed, and the 

scattered fields are calculated from the diffraction 

integrals of the total surface fields. (4) In the classic SPM, 

the Fourier coefficients are determined via multi-

integrals, and the integral dimensionality increases as the 

order of the terms increases. Our method involves only 

1-D integrals regardless of the order and thus is simpler

to express in mathematical form and much easier to

code. (5) Edge diffraction is not considered in the classic

SPM, whereas our method considers tapered waves to

eliminate edge diffraction.

The HOSPM is based on the assumption that the 

boundary conditions are perturbed around those of a 

smooth surface. To verify the validity of the HOSPM, its 

solution should be compared with a solution obtained 

without imposing any restriction on the rough-surface 

properties. Numerical methods are most suitable for 

this purpose. One of the most widely used numerical 

methods is the method of moments (MOM). Therefore, 

the MOM is chosen as the comparison method in this 

study to enable a more conclusive analysis. Simulations 

performed on 1-D one-layer conducting random rough 

surfaces with a Gaussian height distribution are reported. 

Such surfaces are the simplest to describe statistically 

and can be fully characterized by the surface correlation 

function. The Thorsos tapered wave [23] is chosen here 

for its accuracy and broad applications in the truncation 

of rough surfaces. 

The paper is organized as follows. Section II gives 

the preliminaries. Section III presents all functions 

involved in the derivation of the HOSPM. In Section IV, 

many aspects of the HOSPM are analyzed, including 

accuracy, convergence, time efficiency, memory 

consumption, the influences of different correlation 

lengths and root mean square (RMS) heights, and 

frequency robustness. The conclusion is presented in 

Section V. 

Fig. 1. Geometry for wave scattering by a conducting 

random rough surface. 

II. PRELIMINARIES
The model under investigation is the 1-D conducting 

random rough surface shown in Fig. 1, and a two-

dimensional scattering problem is considered. The 

analysis is conducted in the frequency domain, with the 

time-dependence factor  omitted throughout. The 

case of interest is the TE case, so the electric field has the 

form: 

 (1) 

where  is the quantity of the electric field. Throughout 

the remainder of the paper, the scalar wave equation  

is studied instead of  for simplicity. 

Because the wave equation  is scalar, the scalar 

Green's Theorem is used, which has the form: 

(2) 

where  is the Green's function; S is the closed 

surface composed of the rough surface  (shown in 

Fig. 1) and the half-circle , with a radius extending to 
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infinity;  is above the surface ; and  is on the 

surface . 

Upon the application of the extinction theorem [24], 

supposing that the surface is perfectly conducting and 

employing the Dirichlet boundary condition  

for r on , the expression for the scattered field should 

be: 

  (3) 

where  is located in the upper space;  is the 

surface height profile of the rough surface, with the 

spectral density function ; and  is the unit 

normal vector of the rough surface pointing toward the 

upper space. 

To prevent current discontinuity at the end points 

[24], we can use either a tapered incident wave or 

periodic boundary conditions [25-27]. Because the rough 

interface modeled in the simulation is of finite size, a 

tapered incident wave is used. The Thorsos tapered wave 

has been extensively applied for this purpose because of 

its low computational expense. The form of the tapered 

incident wave is as follows: 

  (4) 

with 

  (5) 

where k is the wave number of free space,  is the 

incidence angle, and g  is the tapering parameter. 
 

III. FORMULATION 

A. Solutions for the total and scattered fields 

Because its variable has the form , 

the field  on the random rough surface is related to 

the profile of the scattering surface . In the case of 

a slightly rough surface, the RMS height h of the surface 

is far smaller than both the incident wavelength   

and the absolute value of . According to the power 

series expansion theory, which is valid when the variable 

(in our case, the absolute value of the height profile, 

) is small, the field on the rough surface can be 

expanded as a Taylor series about the field on the mean 

surface ( ): 

  (6) 

where  and f on the right are used in place of  

and  for brevity. In this equation, n can theoretically 

approach infinity.  is composed of an incident field 

and a scattered field. The certain part of  is the 

incident field, and the uncertain part is determined by the 

scattered field. The scattered field on the rough space as 

well as the total field can be expressed as the sum of  

the zeroth-order field component, the first-order field 

component, and all other components up through the nth-

order field component, as follows: 

  (7) 

Based on equations (6) and (7), the different-order 

series expressions for the total field on the surface should 

be as follows: 

  (8.0) 

  (8.1) 

  (8.2) 

 ⋮ 

  (8.n) 

where , , , ... and  are used as 

abbreviations for , , , ... and , 

respectively. Based on equation (8.n), the partial 

derivatives of  with respect to  and  should 

be: 

  (9) 

  (10) 

Because equations (8.0) to (8.n) represent total field 

expressions of different orders, each of them should  

obey the same boundary condition at the interface. By  
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simultaneously applying the Dirichlet boundary condition 

to equations (8.0) ~ (8.n), the 0th-order through nth-

order expressions for the scattered field on the mean 

surface z=0 can be obtained as follows: 

  (11.0) 

  (11.1) 

  (11.2) 

 ⋮ 

  (11.n) 

To obtain the nth-order partial derivatives of the 

scattered field on the rough surface , the spectral 

domain integral is used as follows: 

  (12) 

where . In this way, the scattered field is 

expressed in the space domain as an accumulated 

spectrum of waves with different propagation directions 

and different amplitudes.  is the amplitude of 

each wave in the spectrum. The following relationships 

are obtained on the mean surface: 

  (13) 

  (14) 

  (15) 

  (16) 

  (17) 

By calculating the Fourier transform of equation 

(14), An(kx) is determined. The amplitude is substituted 

into equations (15), (16) and (17), and the inverse Fourier 

transforms are applied subsequently. Accordingly,  

the partial derivative terms , 

 and  can 

be determined. These partial derivative terms are needed 

in the calculation of equations (8.0) (8.n), (9) and (10). 

The partial derivatives of the tapered incident field are 

derived in Appendix. 

 

B. Bistatic scattering coefficients 

As expressed in equation (3), the scattered field in 

the upper space can be obtained by integrating the 

Green's function with the directional derivative of  

the total field at the interface . The two-dimensional 

Green's function in equation (3) is: 

  (18) 

When this Green's function is expanded at infinity, the 

Hankel function  can be approximated  

as follows when  is located at an infinitely far 

distance and the observation is in the direction of 

: 

  (19) 

Upon substituting equations (18) and (19) into 

equation (3) and setting the total field to be of nth-order, 

the scattered fields can be written as: 

  (20) 

with 

  (21) 

where 

 , (22) 

and 

  (23) 

Consequently, 

  

 (24) 

where  and  can be obtained 

from equations (9) and (10). 
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The expression for the normalized far-field bistatic 

scattering coefficients (BSCs) is [24]: 

  (25) 

For a plane wave, , and  is the 

intrinsic impedance of free space. Accordingly, the 

power  received by the rough surface should be: 

  (26) 

The value of the quantity expressed in equation (26) 

approaches infinity. This makes the calculation of 

 impossible. However, this dilemma can be 

resolved by using the Thorsos tapered wave as the 

incident wave[23]. In this case, 

 

   

 

 

 

tapered wave

2

tapered wave

2

2

2 2 2

,

1 1

2 8

,
1 2 tan

8 cos 1
2 2 cos

s

s

i sn

N

n s

inc

N

n s

i
i

i

k

P

kg
k g

  

 
 

 


 






 
 

 

 (27) 

where 

  (28) 

The BSCs can then be determined using equation (27) 

and the related equations above. 

  

C. Monte Carlo simulation 

To obtain the statistical averages of the BSCs for 

random rough surfaces, Monte Carlo simulations are 

used. In the simulation process, independent samples of 

rough surfaces are first generated, and the BSCs for each 

sample are individually computed. Then, the statistical 

averages of the BSCs for m independent computations 

are determined as follows: 

  (29) 

where m  is the index representing the 

number of computations, M is the total number of surface 

realizations,  is the statistical average, and  is 

the value from the mth simulation. 

 

IV. VALIDATION 
In this section, several numerical examples are 

presented to evaluate the HOSPM in terms of many 

aspects, including accuracy, convergency, time efficiency, 

the influences of correlation lengths and RMS heights, 

and frequency robustness. Because of its wide range of 

accuracy [28], the MOM is employed as the method for 

comparison. The general formulation of the MOM is 

described in [24], and all code for implementing the 

MOM is based on Dr. Tsang Leung's Electromagnetic 

Wave MATLAB Library. Because this paper considers 

a 1-D problem under TE incidence, all simulations default 

to HH polarization. To fully exploit the computational 

efficiency of FFT operations, the number of points on the 

rough surface is set to be a power of two. 
 

A. Accuracy and convergency 

A table and a figure are presented in this subsection. 

Because subsection D addresses the influences of 

frequency, a fixed wavelength of  is considered 

in subsection A, B and C. All of the parameters used to 

generated the results shown in Fig. 2 are listed in the 

figure, including the rough surface length L, the RMS 

height h, the correlation length l, the tapering parameter 

g, the incidence angle , the number of points N on the 

surface and the number of iterations (samples) M; these 

are also the parameters used for the simulations reported 

in Table 1. 

 

Table 1: The accuracy of HOSPM on backscattering and 

forward scattering direction and relative errors between 

different orders 

n Δb(dB) Δs(dB) Σn 

  0.40 / 

  0.41 0.027 

  0.39 0.049 

  0.39 1.90ⅹ10-7 

  0.39 1.28ⅹ10-5 

  0.39 1.13ⅹ10-7 

  0.39 1.15ⅹ10-8 

  0.39 1.75ⅹ10-11 

n: order of HOSPM. 

Δb: |σn(MOM)-σn(HOSPM)| in the backscattering angle. 

Δs: |σn(MOM)-σn(HOSPM)| in the forward scattering angle. 

Σn: relative error for the nth-order HOSPM. 

 

Figure 2 shows the BSCs for 1-D perfectly 

electrically conducting (PEC) Gaussian random rough 

surfaces obtained using different-order HOSPMs and  

the MOM. In the figure, the curves obtained using the  

1st-, 2nd-, 4th- and 8th-order HOSPMs do not show 

significant differences. The curve of MOM and the 

curves from HOSPMs match well to the left of the 

specular scattering point. The value of BSCs generally 

coincide between the HOSPMs and the MOM over  
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a wide range of scattering angles from precisely -89˚to 

41˚. As can be seen from Fig. 2 in the manuscript, the 

BSCs generally coincide between the HOSPMs and the 

MOM over a wide range of scattering angles from 

approximately -89˚ to 41˚, with good matching for many 

angles. 

 

 
 

Fig. 2. Comparisons of the BSCs by 1st-order, 2nd-order, 

4th-order and 8th-order HOSPM and MOM. 
 

The biggest difference between the two methods  

lies in how to get the value of the term 

 in the integrand in Eq. (21). 

MOM uses a numerical method which is solving the 

matrix, and HOSPM uses the method which is a series of 

formulas related to the series expansion. Therefore, the 

final values obtained by the two methods are difficult to 

be exactly the same, which is the main reason why the 

matching between HOSPM and MOM is not good for 

angle larger than 41˚. 

For more specific investigations, two representative 

angles, the backscattering angle and the forward 

scattering angle, are selected as objects of study. These 

two angles are also of the greatest interest compared with 

other angles. 

Table 1 presents the results for the precision of  

the different-order HOSPMs in the backscattering and 

forward scattering directions and the convergence 

among the different-order HOSPMs. Comparisons of 

precision between nth-order HOSPMs and the MOM in 

the backscattering and forward scattering directions are 

given in the second and third rows of Table 1. At 1st 

order and above, the HOSPM shows high precision, with  

differences of less than 0.6 dB between the two methods. 

Since HOSPM are expressed in the form of series  

of arbitrary orders, the order convergence should be  

discussed. The fourth row in Table 1 shows the iteration 

errors from the 2nd-order to the 8th-order HOSPM. 

The relative errors for BSCs of different orders that 

are reported in the fourth row of Table 1 are denoted by 

Σn and are defined as:  

 (n ≫ 2). (30) 

As seen from Table 1, the relative error Σn decreases  

as the order n increases. If we set 5% as the threshold  

for convergence, the values obtained for the 1st-order 

HOSPM and above are acceptable. Because the relative 

errors of the 2rd-order HOSPM and above are negligible, 

the terms of 2rd-order and above in the series can be 

ignored, consistent with the error property of power 

series. 

These findings prove that our method is accurate and 

stable. Considering both the accuracy and convergence 

results, the BSCs obtained using the 1st-order HOSPM 

and above can be considered acceptable. 
 

B. Time and memory consumption 

Without the application of any acceleration 

algorithms, the MOM has a memory requirement of 

O(N2) and a computational complexity of O(N3), where 

N is the total number of sample points per interface.  

A precise analysis reveals that, the HOSPM requires 

O[(n+1)N] memory and O[(n+1)!n3N] operations. 

Therefore, the HOSPM is theoretically superior to the 

MOM in both memory and complexity because of 𝑛 ≪ 𝑁. 

The HOSPM also exhibits computational advantages in 

practice, as shown in Table 2 and Fig. 3. Table 2 presents 

the time consumption data for the MOM and for the 2nd-, 

3rd- and 4th-order HOSPMs, which vary with the 

number of points on the surface. 

 

Table 2: The time cost by MOM and HOSPM of 

different orders (s) 
N 28 29 210 211 212 213 

t  6.51 25.13 103.70 491.51 2532.0 

t1  2.97 5.75 11.50 27.57 74.48 

t  8.44 16.61 35.83 87.56 238.2 

t3  19.55 39.10 85.33 208.91 579.47 

t4  41.81 85.62 186.47 458.19 1239.8 

t: the time cost by MOM. 

t1: the time cost by HOSPM1. 

t2: the time cost by HOSPM2. 

t3: the time cost by HOSPM3.  

t4: the time cost by HOSPM4. 
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Fig. 3. Time cost by MOM and HOSPMs with 1st-, 2nd-, 

3rd- and 4th-order (in the unit of second). 
 

Figure 3 illustrates the data summarized in Table 2. 

The parameters used to generate the results presented in 

Fig. 3 and Table 2 are listed in the figure. Among the 

different-order HOSPMs, the 1st-order method exhibits 

the best time performance. Its time curve is nearly linear, 

whereas the MOM has a quadratic cubic time curve. As 

the order of the HOSPM increases, the curve becomes 

steeper, indicating worse efficiency. However, even  

the 4th-order HOSPM still shows better efficiency 

compared with the MOM when the number of points is 

greater than 212. Because of the use of FFT operations, 

the value of N must have the form , where N1 is an 

integer. When N1=10, the 1st- and 2nd-order HOSPM 

shows better time performance than the MOM; when 

N1=11, the 1st-, 2nd- and 3rd-order HOSPMs perform 

better; and when N1=13, the HOSPMs all perform better. 

Thus, we can conclude that our method shows good 

potential in terms of time efficiency for electrically large 

surfaces. 

Considering the time efficiency, the 1st-order 

HOSPM is the best choice. Considering all the factor 

discussed above (the time efficiency, accuracy and 

convergency), the 2nd-order HOSPM is a better choice. 

Therefore, the following analysis will focus on the 2nd-

order HOSPM. 
 

C. Correlation length and RMS height 

The correlation length is a fundamental quantity  

that describes a random rough surface. It provides a 

benchmark for estimating the level of independence 

between any two points on a random rough surface. If 

the distance between two points is larger than the 

correlation length l, the heights of these two points can 

be approximately regarded as independent. The RMS 

height h is a fundamental quantity that describes the 

roughness of a rough surface. The larger the RMS height 

is, the rougher the surface is. Therefore, the appropriate 

ranges of RMS heights and correlation lengths in which 

our method is applicable should be discussed.  

Considering the analysis presented in subsection A, 

the HOSPM will be studied only at 2nd-order in this 

subsection and next for brevity. The regions of validity 

with regard to the backscattering and forward scattering 

angles for the 2nd-order HOSPM are examined based  

on two sets of simulations, as shown in Fig. 4. Each  

set consists of 325 different combinations of values of  

the varies from 0.1 to 2.5 in increments of 0.1  

correlation lengths and RMS heights. The value of kl 

(0.16m≤l≤0.40m), whereas kh varies from 0.05 to 0.65 

in increments of 0.05 (0.008m≤h≤0.104m). 

 

 
 (a) Backscattering 

 
    (b) Forward scattering 

 

Fig. 4. Contour plot of |σMOM-σHOSPM2| for backscattering 

and forward scattering direction when λ=1m, θi=45˚, 

L=25.6λ, g=λ/4, N=256. Both σMOM and σHOSPM2 are in 

decibels. The area enclosed by pink lines in (a) is the 

overlapping area for (a) and (b) under the condition 

|σMOM-σHOSPM2|≤1dB. 

 

For the backscattering case, as illustrated in Fig. 4 

(a), the 2nd-order HOSPM and the MOM show very 

good agreement in a broad region where kl spans the 

domain of the horizontal axis, and kh covers most the 

area of the figure, leaving only a little space in the upper 

right corner, where both kl and kh approach maximums. 
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In the small region near kl=2.5 and kh=0.65 (l=0.40m 

and h=0.104m), the difference between the two methods 

eventually grows to 3dB, indicating that the 2nd-order 

HOSPM is not suitable for the backscattering case when 

the RMS height and correlation length are both large. 
For the forward scattering case, as illustrated in Fig. 

4 (b), there is a large region in which the difference 

between the two methods is below 1dB. In this region, 

the value of kl ranges from 0 to 2.5 (0≤l≤0.40m), and  

kh ranges from 0 to 0.65 (0≤l≤0.103m). The error is 

approximately 5dB in a small region near kl=0.6 and 

kh=0.65 (l=0.10m and h=0.103m). This small region 

should be avoided when the HOSPM is used to estimate 

forward scattering. 

The region enclosed by pink lines in Fig. 4 (a) 

represents the overlapping region for backscattering  

and forward scattering, where the condition |σMOM-

σHOSPM2|≤1dB is satisfied for both cases. In this region, kl 

ranges from 0 to 2.5 (0≤l≤0.40m), and kh ranges from 

0.15 to 0.5 (0.024m≤l≤0.80m). The overlapping area 

takes up most of the area under discussion. This provides 

a broad choice of suitable values when scattering data 

from both the backscattering and forward scattering 

directions are needed. 

 

Table 3: The backscattering coefficients and forward scattering coefficients of different frequencies 

f(Hz) BC(dB) FC(dB) f(Hz) BC(dB) FC(dB) f(Hz) BC(dB) FC(dB) 

1.0G  11.08 15.0G -19.78 11.08 300G -20.06 11.1 

1.5G  11.07 30.0G -19.89 11.08 333G -20.37 11.08 

3.0G  11.06 33.3G -19.37 11.06 375G -20.20 11.09 

3.3G  11.04 37.5G -19.35 11.12 429G -19.61 11.10 

3.7G  11.13 42.9G -20.37 11.09 500G -19.83 11.07 

4.3G  11.13 50.0G -19.81 11.10 600G -19.90 11.08 

5.0G  11.08 60.0G -20.12 11.09 750G -20.83 11.11 

6.0G  11.12 75.0G -20.13 11.08 1.0T -19.73 11.04 

7.5G  11.09 100.0G -19.51 11.05 1.5T -19.62 11.09 

10.0G  11.07 150.0G -19.71 11.12 3.0T -19.86 11.07 

BC: the abbreviation of backscattering coefficient. 

FC: the abbreviation of forward scattering coefficient. 

D. Frequency robustness 

As discussed above, the 2nd-order HOSPM has 

been proven to be good for both the backscattering and 

forward scattering angles. This section will focus on the 

frequency stability of the BSCs for these two angles. The 

analysis considers a range of frequencies from 1.0GHz 

to 3.0THz. A table and a figure are presented to illustrate 

the analysis. The univariate boxplot introduced by [29] 

is used to analyze the frequency robustness of the 

HOSPM, as shown in Fig. 5. 
 Table of backscattering and forward scattering 

coefficients (Table 3). Both the backscattering  

and forward scattering coefficients are stable for 

frequencies from 1.0GHz to 3THz. The values of 

the backscattering coefficients vary only slightly. 

The difference between the largest and smallest 

values is less than 2dB. The values vary even less 

for the forward scattering coefficients, with a 

difference between the largest and smallest values 

of no more than 0.1dB. 

 Box plot (Fig. 5). This plot visualizes the 

backscattering and forward scattering coefficients 

shown in Table 3 for different frequencies. The  

box plot displays the distributions of the sorted 

backscattering and forward scattering coefficients, 

where the observations along the x axis represent 

the different observation sets and the observations 

on the y axis represent the values obtained. For 

both sets, most values are very closely clustered, 

with no outliers. This plot also yields various 

statistical summary measures for the data in our sets. 

For the backscattering coefficients, the: minimum 

value is -21.14dB, the median is -20.26dB, and  

the maximum value is -19.65dB. For the forward 

scattering coefficients, the: minimum value is 

11.03dB, the median is 11.09dB, and the maximum 

value is 11.16dB. 

In brief, our method can be applied over a wide 

range of frequencies with high numerical stability. 
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Fig. 5. Boxplot: backscattering and forward scattering 

coefficients by 2nd-order HOSPM among different 

frequencies. 

 

V. DISCUSSION 
The proposed method provides general explicit 

closed-form HOSPM expressions of arbitrary orders for 

solving the problem of the EM fields scattered from 1-D 

conducting random rough surfaces under TE incidence. 

The main contributions of this new method are four-fold: 

first, the surface field is treated as a function of the 

surface profile, allowing the total field to be expanded in 

power series form; second, the classic SPM is restricted 

to series of order two, whereas the applicability of our 

method extends to arbitrary orders; third, Faà di Bruno's 

formula is introduced into CEM for the first time to 

expand a tapered incident wave and its partial derivatives 

in power series form; and fourth, the obtained 

mathematical form is simple and easy to program and 

does not require any mathematical pretreatment. 

In the context considered here, our method has been 

validated from many perspectives. 

 In simulation A, the 1st-, 2nd-, 4th- and 8th-order 

HOSPMs were compared with the numerically 

exact MOM. The accuracy of the HOSPM at 1st-

order and above was verified to be high. The 

convergency of the HOSPM was discussed with 

regard to the backscattering and forward scattering 

angles. The 1st-order form and above are considered 

to be satisfactory. 

 In simulation B, the computational complexities of 

the 1st-, 2nd-, 3rd-, and 4th-order HOSPMs and the 

MOM were compared to investigate the efficiency 

of the proposed method. The results show that  

the larger the scale of the problem is, the better  

the HOSPM performs. Considering all factors 

mentioned above (accuracy, convergence, and time 

efficiency), the 2nd-order HOSPM applied to the  

backscattering and forward scattering angles was 

selected as a representative pair of cases for further 

study. 

 In simulation C, the regions of validity of the 2nd-

order HOSPM with respect to correlation lengths 

and RMS heights were investigated. It was shown 

that the HOSPM exhibits high precision and 

stability over a broad range of correlation lengths 

and RMS heights. 

 In simulation D, the values of the backscattering 

and forward scattering coefficients were determined 

for 30 different frequencies. The method was 

confirmed to be stable over a broad frequency 

spectrum ranging from 1.0 GHz to 3.0 THz. 

 

VI. CONCLUSION 
We can conclude that HOSPM is a method with a 

rigorous mathematical form, high accuracy, high 

efficiency and greater suitability for application to a wide 

variety of different rough surfaces and different 

frequencies. Moreover, this model can further be used to 

study radar echoes from dynamic ocean surfaces and 

various inclusions in studies of composite EM scattering 

from targets and sea backgrounds. A fast and accurate 

forward model is necessary to ensure a successful 

inversion process. Therefore, our method is necessary 

and important for many inversion scenarios. It can be 

used in the retrievals of subsurface soil moisture 

measurements, in planetary exploration, and in the 

analysis of other natural scenes and can also serve as an 

important tool for radar system design. Hence, our future 

work will focus on higher-order solutions for dielectric 

or multilayer rough surfaces with an arbitrary number of 

rough interfaces under both TE and TM incidence. 
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APPENDIX: EXPRESSIONS FOR THE 

PARTIAL DERIVATIVES OF A TAPERED 

INCIDENT WAVE 

The computation of the derivatives of  is both 

useful and ubiquitous in analysis. Fà{a} di Bruno's 

formula, named after Francesco Faà di Bruno, is a 

mathematical identity for generalizing this problem. 

Because a Thorsos tapered incident wave can be 

expressed as, 

   (31) 

( )f xe
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where 

   (32) 

the series expansion of this tapered incident wave can  

be derived using Faà di Bruno's formula[30]. This 

expansion has the form: 

   (33) 

Here, the  are the Bell 

polynomials, which have the form, 

   (34) 

where ,  and  are used as abbreviations for 

,  and , respectively, and a1, a2, 

… and am are all integers greater than or equal to zero. 

The Bell polynomials also satisfy the following relation 

(m≥1): 

   (35) 

where Bm,k and Bm,k-1 are used as abbreviations  

for  and 

, respectively. This 

relation is useful for programming the necessary 

calculations. 
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