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Abstract ─ Specific absorption rate (SAR), penetration 

depth, and temperature rise in a one-dimensional (1D) 

dispersive human head model due to electromagnetic 

fields radiated by wireless communication systems 

operated up to 100 GHz are evaluated with the use of a 

Multiphysics model. In this model, the Debye model of 

human head tissue parameters is integrated into the 

finite-difference time-domain method with the use of the 

auxiliary differential equation to obtain solutions at 

multiple frequencies of interest using a single simulation. 

Then, the SAR, peneration depth, and temperature rise 

in the 1D head model are calculated for each frequency 

of interest. The effects of frequency on the SAR, 

penetration depth, and temperature rise in the head are 

investigated. 

Index Terms ─ Dispersive tissues, FDTD method, 

human safety standard, penetration depth, millimeter-

wave radiation, SAR, temperature rise. 

I. INTRODUCTION
Due to the improvement in wireless communication 

applications such as fifth generation (5G) mobile systems 

[1], radar systems [2] for military and automotive 

industries, and medical treatment [3], the use of 

electromagnetic (EM) fields in centimeter and millimeter 

wave ranges is increasing day by day. For 3G mobile 

communication system, the frequency band was less 

than 6 GHz and for 5G mobile communication system 

the frequency band is between 24 GHz and 52 GHz. In 

the next few years, we start to enter into the 6G mobile 

communication system. Therefore, we should consider 

the effect of EM wave containing 100 GHz or higher 

frequency band on human tissues. It is important to 

investigate the absorption of EM energy and resulting 

temperature rise in human tissues due to EM fields in 

these frequency ranges.     

In order to limit the temperature rise in the tissues 

resulting from the absorption of EM energy due to EM 

field exposure, international EM safety guidelines/ 

standards published by the Federal Communication 

Commission (FCC) [4], the International Commission 

on Non-Ionizing Radiation Protection (ICNIRP) [5], 

IEEE (C95.1–2005) [6], and Safety Code 6 (SC–6) [7] 

provide basic restrictions for the amount of absorbed EM 

energy in tissues and limits of incident power density 

(IPD). Table 1 gives maximum permissible exposure 

(MPE) limits of IPD, dependent on frequency range 

and exposure type (general public exposure (GPE) or 

occupational exposure (OE)).  

The amount of EM energy absorbed by biological 

tissues is defined as specific absorption rate (SAR). The 

SAR presents an EM heat source for the tissues. The 

peak-spatial SAR averaged over 1 g of tissue (SAR1g) 

has been used as a restriction for frequencies from 100 

kHz to 6 GHz in FCC, SC–6, and old versions of IEEE 

standards. The specified limits of SAR1g in head, neck, 

and trunk are 1.6 W/kg for GPE and 8 W/kg for OE, 

respectively. In the updated version of IEEE standards, 

the peak-spatial SAR is calculated over 10 g of tissues 

(SAR10g) instead of 1 g and the upper frequency limit for 

evaluating SAR values has been changed from 6 GHz to 

3 GHz. In ICNIRP, the SAR10g value is a good measure 

for assessing absorbed energy up to 10 GHz. The 

specified limits of SAR10g are 2 W/kg for GPE and 10 

W/kg for OE, respectively. In the IEEE standard, the 

frequency range from 3 GHz to 6 GHz is considered as a 

transition region for SAR and IPD. At frequencies above 

6 GHz for FCC and SC–6, above 3 GHz for IEEE 

standard, and above 10 GHz for ICNIRP, SAR is not 

considered appropriate for evaluating exposure, and thus 

IPD is considered as a restriction. 

At frequencies below 6 GHz, effects of EM fields 
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due to near-field or far-field sources on the three-

dimensional (3D) human head [8-15] and human 

eyes [16-19] have been investigated extensively using 

the finite-difference time-domain (FDTD) method. 

Furthermore, a one-dimensional (1D) multi-layered 

human head model [20-22] and body model [23-24] 

exposed to far-field sources at frequencies below 6 GHz 

have been studied using the FDTD method. 

Table 1: MPE limits of safety standards/guidelines for 

GPE and OE 

Safety 

Standards 

Frequency 

(f:GHz) 

GPE / OE 

MPE Limit 

for GPE 

(w/m2) 

MPE Limit 

for OE 

(w/m2) 

IEEE [6] 
0.4 – 2 / 0.3 – 3 f / 0.2 f / 0.03 

2 – 100 / 3 – 300 10 100 

FCC [4] 
0.3 – 1.5 f / 0.15 f / 0.03 

1.5 – 100 10 50 

ICNIRP [5] 
0.4 – 2 f / 0.2 f / 0.04 

2 – 300 10 50 

SC- 6 [7] 
0.3 – 6 / 0.1 – 6 0.02619 ƒ0.6834 0.6455 ƒ 0.5 

6 – 150 10 50 

At frequencies above 6 GHz, effects of EM fields on 

the 3D human head and human eye models have not been 

well investigated using the FDTD method, except for 

a few studies [25-29]. A 3D anatomical eye model 

exposed to EM fields was investigated at frequencies of 

6, 18, and 30 GHz in [26] and 77 GHz in [25]. In [27], a 

3D human brain model and eye model exposed to EM 

fields were investigated at frequencies between 1 GHz 

to 10 GHz. In [28-29], a 3D human head model with 

a dipole antenna was analyzed at frequencies up to 30 

GHz. For frequencies above 30 GHz, the minimum 

wavelength in head tissues are very small and thus the 

3D human head model has not been studied using the 

FDTD method, due to excessively long computation 

times and large memory requirements when the FDTD 

cell size is in the order of 0.05 of the wavelength in the 

tissue. Therefore, the FDTD method has been used to 

analyze a 1D multi-layered human model in [29-30] for 

frequencies from 1 to 30 GHz and from 3 to 300 GHz, 

respectively, and a part of the 3D human face model 

included eye tissues in [31] for frequencies up to 100 

GHz due to far-field sources. Furthermore, analysis of a 

1D multi-layer human tissue model for frequencies up to 

100 GHz in [25] and up to 300 GHz in [32] has been 

carried out using an analytical method.  

All biological tissues are dispersive, thus their EM 

parameters such as relative permittivity and conductivity 

change with frequency. Therefore, the EM simulation of 

the human head must be repeated for each frequency of 

interest, which leads to a large increase in computation 

time. In all previous work, except for the studies in [13-

14], each EM simulation has been performed for only 

one frequency of interest. In order to reduce the required 

computation time and get solutions for multiple 

frequencies of interest in a single simulation, an algorithm 

called a Multiphysics model was proposed in [13-14]. 

This model can be used to analyze the SAR, temperature 

rise, and radiation penetration depth in the human head 

at multiple frequencies in a single simulation. This 

model is based on the Debye representation of human 

head tissues which was conducted here for frequencies 

up to 100 GHz and is utilized in the FDTD formulation 

[33] for the dispersive tissues based on the auxiliary

differential equation. Then, calculations of SAR and

temperature rise using the Pennes bioheat equation

[34] are performed. The Debye model of the tissues

is constructed with three-term coefficients for three

different frequency ranges: 100 MHz to 2 GHz, 2 GHz

to 20 GHz, and 20 GHz to 100 GHz. These coefficients

are determined by following the analysis in [35], based

on data obtained from [36]. Therefore, the penetration

depth, SAR and resulting temperature rise distributions

in the human head model due to EM radiated fields can

be calculated for a wide range of frequencies up to 100

GHz using the Multiphysics model.

In this paper, two 1D sections of the multi-layer 

head models based with and without eye tissues obtained 

from a 3D MRI images of the human head model are 

investigated using the Multiphysics model to show the 

effect of tissue types in the head model and to obtain 

the penetration depths, SAR and temperature rise 

distributions due to a far-field source at the frequencies 

up to 100 GHz using a single FDTD simulation. Eye 

tissues are chosen for investigation because, due to a 

lack of blood flow, they are most sensitive to EM heat 

sources. Numerical results obtained in this work are 

compared with published results for selective frequencies 

to assess the accuracy of the Multiphysics model and are 

useful for the development of EM safety guidelines/ 

standards at frequencies up to 100 GHz with faster 

simulation tool. 

II. NUMERICAL METHOD AND MODELS

A. 1D multi-layer human head models

1D multi-layer head models analyzed in this work

are obtained from a 3D realistic human head model [37]. 

The 3D head model consists of 21 biological tissues: 

skin, fat, bone, brain (grey and white matter), blood 

vessel, cartilage, cerebellum, cerebral fluid, cornea, lens, 

dura, eye sclera, gland, mucous membrane, muscle, nerve, 

tongue, tooth, trachea, and vitreous humor. Figure 1 shows 

a horizontal cross-section of the 3D human head model 

which consists of 2324(width)×3120(depth) cubic cells.  

Two cuts (Layer-A and Layer-B) in Fig. 1 are 
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leading to a planar 1D models for the investigation in  

this work. The Layer-A represented contains human 

head tissues without eye tissues, whereas the Layer-B   

contains human head tissues with eye tissues such as 

lens, cornea, eye sclera, and vitreous humor. 
 

 
 

Fig. 1. Horizontal cross-section of a 3D human head 

model. (Layer A: solid line and Layer B: dashed line)  

 

Table 2: Debye parameters of tissues for frequencies of 

20GHz to 100GHz 
Tissue 𝜺∞ ∆𝜺𝒔𝟏 ∆𝜺𝒔𝟐 ∆𝜺𝒔𝟑 𝝉𝟏[𝐩𝐬] 𝝉𝟐[𝐩𝐬] 𝝉𝟑[𝐩𝐬] 
Skin 4.030 0.125 32.419 22.833 1.449 7.233 160.7 

Fat 2.566 0.339 1.182 1.424 1.321 4.985 16.95 

B. Cortical 2.647 0.695 2.683 6.163 1.354 5.566 19.22 

B. Marrow 2.565 0.335 1.158 1.407 1.305 4.911 16.16 

Cartilage 4.371 2.030 11.251 25.934 1.489 6.305 20.23 

Blood 4.498 3.684 32.111 26.674 1.668 6.403 20.63 

Muscle 4.490 3.793 29.742 19.355 1.606 5.797 17.37 

Tongue 4.451 3.348 27.925 21.646 1.609 6.059 17.37 

Tooth 2.647 0.695 2.683 6.163 1.354 5.566 19.22 

Trachea 2.851 2.590 21.581 16.693 1.619 6.103 18.07 

Eye Sclera 4.460 3.447 28.933 22.031 1.641 6.169 19.10 

Cornea 4.465 3.452 28.828 22.807 1.667 6.276 21.60 

Lens 4.376 2.803 23.426 18.052 1.610 6.059 69.76 

V. Humor 6.552 34.203 11.316 139.74 6.701 19.16 873.5 

Nerve 4.251 1.827 15.117 11.972 1.628 6.155 19.21 

Cerebellum 4.403 2.954 24.443 20.383 1.674 6.315 22.97 

Dura 4.602 3.754 19.037 19.513 1.479 5.559 18.61 

CSF 4.614 4.717 39.895 31.694 1.711 6.386 24.34 

Gland 4.494 3.673 30.674 23.645 1.609 6.058 17.31 

M. 

Membrane 
4.368 2.711 22.538 17.662 1.629 6.146 18.93 

W. Matter 4.315 2.212 18.093 14.502 1.594 6.058 17.77 

G. Matter 4.428 3.123 25.887 20.355 1.622 6.128 18.66 

 

B. Debye coefficients of human head tissues 

The Debye coefficients of the tissues are needed to 

obtain solutions at multiple frequencies of interest in a 

single EM simulation. The three-term Debye coefficients 

obtained by using the numerical technique proposed  

in [35] are used to accurately fit the experimental data 

provided in [36] for the biological tissues in the 

frequency ranges of 100 MHz to 2 GHz, 2 GHz to 20 

GHz, and 20 GHz to 100 GHz.  The three-term Debye 

coefficients for the frequency range between 20 GHz and 

100 GHz are tabulated in Table 2. 
 

C. Incident plane wave and FDTD parameters 

An incident plane wave with a Gaussian waveform 

containing all frequencies of interest up to 100 GHz is 

considered as the EM fields radiated by wireless 

communication systems. In this paper, the IPD of the 

incident plane wave are set to 100 W/m2 and 10 W/m2 

which are maximum permissible exposure limits for 

occupational and public exposures [6], respectively. 

The linearly polarized plane wave in the FDTD 

problem domain is generated on the total-field/scattered-

field (TF/SF) boundary [33]. The convolution perfect 

matching layer (CPML) [33] is used as an absorbing 

boundary to truncate the FDTD problem domain. The 

Courant-Friedrichs-Lewy (CFL) condition is used to 

determine the numerical stability in the FDTD method. 

This condition depends on the cell size of the FDTD 

problem domain. Thus, the cell size should be less  

than 𝜆min/20, where 𝜆min is the wavelength of the highest 

frequency in the head model. In order to satisfy this 

criterion, the cell size of the 1D head model is set to 

0.0625 mm. 

 

D. SAR and temperature rise calculation for 1D 

multi-layered model 

The electric field in time-domain is transformed  

to frequency domain by using the discrete Fourier 

transform (DFT) in each time-step of the FDTD 

simulation. After the FDTD simulation is completed, 

electric field (E) in the frequency domain is used to 

calculate the steady-state SAR distribution in the 1D 

head model at each frequency of interest. The SAR 

equation for the 1D multi-layered model is written at a 

specific frequency and location as follows:  

𝑆𝐴𝑅(𝑖) =
𝜎(𝑖)

2𝜌(𝑖)
(|𝐸(𝑖)|2),  (1) 

where 𝜎 and 𝜌 are conductivity [S/m] and mass density 

[kg/m3] of tissue, respectively, and i denotes the indexed 

cell. The algorithm specified in the IEEE C95.3 standard 

[38] is applied to calculate the SAR1g and SAR10g in the 

1D head model.  

The temperature rise in the 1D head model is 

calculated by using the Pennes bioheat equation in [34] 

and as implemented in [13-14]. The SAR1g distribution 

are used as EM heat source into the bioheat equation.  

All required thermal parameters for temperature rise 

calculations in the tissues are provided in [24]. 

 

III. NUMERICAL RESULTS AND 

DISCUSSIONS 
First, the results obtained in this investigation are 

compared to the limited results available in the literature 

to confirm the validity of our 1D multi-layered head 

models with the use of the Multiphysics model. Then, the 

penetration depth, SAR, and temperature rise in Layer-

A and Layer-B due to an EM plane wave are calculated 

using the Multiphysics model for three frequency ranges 

(100 MHz to 2 GHz, 2 to 20 GHz, and 20 to 100 GHz).  

 

A. Comparison of results 

In order to prove the validity of the Multiphysics 

Layer-A 

Layer-B 
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model, the maximum local SAR, SAR1g, SAR10g, and 

temperature rise values in the Layer-A model obtained 

by the Multiphysics model at the frequencies of 3, 6, 24, 

77, and 100 GHz are compared to those values obtained 

analytically for a 1D multi-layer model consisting of 

only skin, fat, and muscle in [25]. The results listed in 

Table 3 are obtained when the IPD is 10 W/m2. Although 

the 1D multi-layered models in [25] and in this work 

have different tissue layer thickness, and the EM and 

thermal parameters of tissues used are different, the results 

in Table 3 are in a good agreement with acceptable 

differences. For IPD is 100 W/m2, the measured and 

simulated temperature rise calculated by using the finite-

element method (FEM) in [25] are 0.7 and 0.84 oC at  

77 GHz, respectively, whereas the temperature rise 

obtained using our Multiphysics model is 0.64 oC.  

Furthermore, a 3D eye model has been analyzed at 

77 GHz using the traditional FDTD method with the IPD 

of 10 W/m2 in [25]. The reported SAR1g is 0.66 W/kg, 

whereas in this work, the SAR1g for Layer-B model 

obtained by the Multiphysics model at 77 GHz is 0.55 

W/kg. The SAR1g values obtained in [25] and here  

are close to each other, even with the use of different 

dimensional models. 
 

Table 3: Layer-A results compared with those from [25] 

when IPD =10 W/m2 
Freq. 

(GHz) 
Methods 

SARmax 

(W/kg) 

SAR1g,max 

(W/kg) 

SAR10g,max 

(W/kg) 

Temp. 

Rise (oC) 

3 
Result in [25] 0.098 0.200 0.110 <0.1 

Multiphysics 0.548 0.154 0.101 0.074 

6 
Result in [25] 0.800 0.240 0.140 <0.1 

Multiphysics 0.888 0.260 0.144 0.038 

24 
Result in [25] 7.740 0.420 0.200 <0.1 

Multiphysics 8.022 0.465 0.215 0.057 

77 
Result in [25] 27.200 0.580 0.270 <0.1 

Multiphysics 24.511 0.581 0.270 0.064 

100 
Result in [25] 33.900 0.620 0.290 <0.1 

Multiphysics 28.982 0.616 0.286 0.067 

 

B. SAR and temperature rise distribution on layer-A 

The penetration depths, SAR, and temperature rise 

distributions on the Layer-A model due to the incident 

plane wave with an IPD of 100 W/m2 are calculated up 

to 100 GHz using the Multiphysics model. However, one 

should point out that the data in [6] assumes 10 W/m2, 

which is the maximum permissible limit for general 

public exposure. While, in this work, we assume that the 

incident power density is equal to 100 W/m2 which is the 

maximum permissible limit for occupational exposure. 

That's why the results in Table-3 and those presented in 

the figures of this and the next section are having an 

approximately factor of 10 differences.  

For Layer-A model, the maximum local SAR values 

and radiation penetration depths as a function of 

frequency are shown in Fig. 2. The penetration depths of 

an EM plane wave incident on the head model provide 

the distance where the local SAR values fall to 1% of 

their maximum. It has been realized that penetration 

depths decrease exponentially with the increase of 

frequency, whereas maximum local SAR values increase 

with frequency, because the permittivity of tissues 

decreases and the conductivity of tissues increases at 

higher frequencies. Decreased permittivity causes more 

incident power to reach deeper tissues, while increased 

conductivity works to prevent this power from entering 

deeper tissues. The penetration depth becomes gradually 

less than 1 mm when the frequency gets closer to 100 

GHz. The maximum SAR1g and SAR10g values up to 100 

GHz are shown in Fig. 3.  

 

 
 

Fig. 2. Maximum local SAR and penetration depth as a 

function of frequency. 

 

 
 

Fig. 3. Max. SAR1g and SAR10g as a function of 

frequency for Layer-A. 
 

 
 

Fig. 4. Maximum temperature rise as a function of 

frequency for Layer-A. 

 

These values are less than the specified limits of  

8 W/kg for SAR1g and 10 W/kg for SAR10g. The calculated 

maximum temperature rise shown in Fig. 4 is less than 

0.73 oC at all frequencies of interest. The maximum  

SAR value occurs at 100 GHz, whereas the maximum 
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temperature rise occurs at 3 GHz. This is because small 

penetration depths at high frequencies prevent incident 

power from entering deeper tissues and causing an 

increase in temperature. It has been realized that the 

maximum temperature rise at all frequencies of interest 

in the head model are linearly proportional to the 

maximum SAR1g and SAR10g values, whereas they are 

not directly proportional to the maximum local SAR 

shown in Fig. 2. The local SAR and temperature  

rise distributions on the Layer-A model at specified 

frequencies up to 100 GHz are shown in Fig. 5 and Fig. 

6, respectively. It can be seen that the maximum values 

of local SAR generally occur at the skin surface of the 

head model, whereas the maximum temperature rise 

occurs at about 2.5 mm under the skin surface of the  

head model. Furthermore, the values of local SAR 

distributions exhibit faster decrease with the increase  

of the frequency, whereas the values of temperature  

rise distributions decrease gradually. Figure 7 shows  

the maximum temperature rise in Layer-A model at 

specified frequencies as a function of time. It can be seen 

that the maximum temperature rise is reached after 30 

minutes of exposure. 
 

 

 

 
 

Fig. 5. Local SAR distributions on Layer-A at specified 

frequencies. 

 

 

 

 
 

Fig. 6. Temperature rise distributions on Layer-A at 

specified frequencies. 
 

 
 

Fig. 7. Max. temperature rise as a function of time. 
 

C. SAR and temperature rise distribution on layer-B 

In order to show the effect of eye tissues on 

penetration depth, SAR, and temperature rise 

distributions, the Layer-B head model with eye tissues 

such as cornea, lens, sclera, and vitreous humor is 

analyzed using the Multiphysics model up to 100 GHz. 

The maximum local SAR values and radiation 

penetration depths as a function of frequency on the 

Layer-B model are shown in Fig. 8. The maximum 

SAR1g and SAR10g values up to 100 GHz shown in  

Fig. 9 are less than the specified limits of SAR1g and  

SAR10g. The calculated maximum temperature rise 

versus frequency are shown in Fig. 10. Numerical results 

show that the maximum local SAR values in Layer-B are 

slightly higher than those values in Layer-A, especially  
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for higher frequencies, whereas the maximum SAR1g and 

SAR10g values in Layer-B are slightly smaller than those 

values in Layer-A. However, the maximum temperature 

rise values in Layer-B are much higher than those values 

in the Layer-A, because Layer-B contains the eye tissues. 

The maximum temperature rise in the 1D human eye 

model is not linearly proportional in everywhere to the 

maximum SAR1g and SAR10g values. This is the reason 

that the temperature rise distribution is affected not only 

by the SAR distribution, but also by thermal parameters 

of eye tissues and penetration depth of the EM radiation. 

The local SAR and temperature rise distributions on the 

Layer-B model at specified frequencies up to 100 GHz 

are shown in Fig. 11 and Fig. 12, respectively. It can be 

seen from Fig. 6 and Fig. 12 that Layer-B allows higher 

temperature into deeper tissues than Layer-A. Figure 13 

shows the maximum temperature rise in Layer-B at 

specified frequencies as a function of time. 
 

 
 

Fig. 8. Maximum local SAR and penetration depth as a 

function of frequency. 
 

 
 

Fig. 9. Max. SAR1g and SAR10g as a function of 

frequency for Layer-B. 
 

 
 

Fig. 10. Maximum temperature rise as a function of 

frequency for Layer-B. 

 

 

 
 

Fig. 11. Local SAR distributions on Layer-B at specified 

frequencies. 

 

 

 

 
 

Fig. 12. Temperature rise distributions on Layer-B at 

specified frequencies. 

ACES JOURNAL, Vol. 35, No. 6, June 2020618



 
 

Fig. 13. Max. temperature rise as a function of time. 
 

IV. CONCLUSION 
The interaction between one-dimensional human 

head model and electromagnetic fields radiated by 

wireless communication systems up to 100 GHz has 

been investigated by using the Multiphysics model in  

a single simulation. Numerical results show that the 

maximum SAR values increase when the frequency gets 

closer to 100 GHz, whereas the penetration depths in  

the head model decrease exponentially. In order to show 

the effect of tissue types on the penetration depth, SAR 

and temperature rise distributions in the head model,  

two head models with and without eye tissues are 

investigated. For the layer-A model, the SAR1g and 

SAR10g values at 100 GHz are 6.16 and 2.86 W/kg, 

respectively. For the layer-B model, the SAR1g and 

SAR10g values at 100 GHz are 5.78 and 2.68 W/kg, 

respectively. These values are less than the specified 

limits of 8 W/kg for SAR1g and 10 W/kg for SAR10g.  

The resulting maximum temperature rise at 100 GHz is 

0.67 oC for the layer-A model and 0.9 oC for the layer-B 

model. These values are less than the threshold 

temperature rise of 3–5 oC for cataract formation and 

physiological damage [39] in the tissues. Numerical 

results obtained in this work are useful to evaluate  

the effect of EM fields radiated from wireless 

communications systems operated up to 100 GHz on the 

human head. 
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