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Abstract ─ A combination of two scattering primitives – 

wedge diffraction primitives and isotropic point 

scatterers – is used to reconstruct far-field monostatic 

scattering patterns of several target geometries and 

addresses shortcomings of traditional approaches that 

only use a single type of primitive (e.g., approximations 

in analytic solutions, slow convergence). An l1-norm 

minimization technique is applied to determine a set of 

weights for the point scatterers. We show that combining 

these two types of primitives yields better reconstruction 

performance than when each primitive type is used 

individually. 

Index Terms ─ Geometric Theory of Diffraction (GTD), 

l1-norm minimization, Radar Cross Section (RCS), 

scattering primitives, sparse representation, Uniform 

Theory of Diffraction (UTD). 

I. INTRODUCTION
It is well known that far-field scattering from a 

complex geometry can be estimated by decomposing 

the target into simple scattering primitives and 

summing their individual responses. Reconstruction of 

electromagnetic field quantities with isotropic point 

scatterers (IPSs) is a fundamental principle in SAR and 

ISAR processing [1]. The use of non-isotropic scattering 

primitives has also been investigated in [2,3]. Moreover, 

in [4], a dense array of IPSs is used as a part of an 

overcomplete dictionary. Sparse representations enable 

discrimination of target returns from nuisance returns 

that can arise from the measurement process. 

In this work, we also seek to reduce the number 

of scattering centers required by introducing a wedge 

diffraction primitive (WDP) derived from GTD/UTD 

theory. We use the WDP to capture known scattering 

mechanisms based on the target’s far-field pattern and 

allow the IPSs to recover the remaining coherent 

differences. We limit the analysis of this approach to 

planar cuts of 2D geometries and compare the results to 

reference data generated by a 3D Method of Moments 

(MoM) code. A normalization factor is applied to 

translate 2D echo width predictions to 3D RCS. 

The use of multiple primitive types is also 

considered under the context of compressive sensing 

(CS). The theory states that the number of measurements 

required to successfully recover the sparse representation 

of a far-field pattern (via Basis Pursuit or other l1-norm 

minimization algorithms) decreases substantially (even 

below the Nyquist sampling rate) as signal sparsity 

increases [5]. We posit that the sparsity of the far-field 

pattern representation can be improved by using WDPs 

to capture diffraction behavior and IPSs to capture 

the remaining difference between the diffraction 

contributions and the original far-field pattern. For 

example, a large portion of the monostatic response from 

a 2D flat plate can be accurately represented with two 

WDPs located at the ends of the plate. In contrast, a 

solution with two IPSs can only capture the specular 

response and would require significantly more points to 

accurately reconstruct the sidelobes of the monostatic 

return. 

While sparsi ty can be satisfied, the efficacy of this 

technique as an application for CS is also dependent on 

the bounds of the Restricted Isometry Property (RIP) of 

the measurement matrix [6]. Determining these bounds 

explicitly is an NP-hard problem, but numerical 

experiments can provide a cursory and empirical 

assessment of its performance. 

In the following sections, we describe the theory 

behind reconstruction via scattering centers and describe 

the framework that was developed to perform the 

reconstruction with a mixed set of primitives. We then 

present two simple cases to validate our approach, 

discuss the implications of their results and describe 

additional areas of investigation. 

II. SCATTERING CENTER THEORY
Consider a collection of spatially distributed

scattering centers, each associated with a complex 

coefficient that modulates its magnitude and phase [7]. 

By adjusting the location and the complex value of each 

scattering center, the superposition of every scattering 

center’s far-field response may yield a pattern that 

matches the far-field response of an arbitrary target 
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geometry. This concept is illustrated in Fig. 1 (a) and 

concisely summarized as: 

SIPS
 pred(k,r̂)=∑ γ

n

N

n=1

e-j2kr̂⋅rn
′
, (1) 

where SIPS
 pred

is the far-field value synthesized with the 

wavenumber k and observed from direction r̂. SIPS
 pred

 is

determined by the summation of N IPSs that are located 

at rn
′  and modulated by the complex coefficient γ

n
. The

components of γ
n
 control the magnitude and phase delay

applied to the IPSs, while the operating frequency and 

the locations of the scattering centers with respect to the 

phase origin affect the exponential term in (1) and alters 

the phase oscillation rate of the far-field pattern. 

Fig. 1. Far-Field approximation of a (a) IPS and (b) 

WDP. 

WDPs, shown in Fig. 1 (b), are coherently summed 

together in a similar fashion as IPSs to generate far-field 

patterns. From [8], UTD diffraction coefficients reduce 

to GTD coefficients when the surfaces of the wedge are 

flat and the observation angles are not in the transition 

regions near the shadow boundaries. We implement 2D 

WDPs as: 

𝐷s,h(ϕ,m)=
-ejπ 4⁄ sin(π m⁄ )

2m√2πk
[(

1

cos
π

m

)∓ (
1

cos
π

m
- cos

2ϕ

m

)],  (2) 

where m=(2π-α)/π, α is the wedge angle and ϕ is 

the monostatic observation angle. In the second term 

between the brackets, the negative term corresponds to 

the soft polarization, while the positive term corresponds 

to the hard polarization (in our case, θ and ϕ polarization, 

respectively). This 2D analytic solution assumes that the 

diffraction edge is always aligned along the z-axis and 

extends towards infinity. The RCS of a finite wedge 

of width w can be determined by multiplying the 2D 

echo width by 2πw2 λ⁄ , where wavelength λ=2π/k. The 

diffraction coefficient 𝐷s,h replaces the IPS coefficient γ
n

in (1) and yields: 

SWDS
 pred(k,r̂)=∑𝐷l

s,h

L

l=1

e-j2kr̂⋅rl
′
, (3) 

to generate the far-field monostatic backscatter of the L 

diffracting wedges. 

We note that the formulation in (2) is valid for 

wedge angles of up to 180° and does not address dihedral 

effects. Moreover, the scattering pattern arising from 

WDPs exhibit asymptotic behavior for monostatic 

angles that are normal to the faces of the wedge due 

to their vicinity to the shadow boundaries. These 

singularities occur in pairs for finite length wedges 

and additional considerations need to be made when 

geometries contain dihedral or concave regions. 

III. OPTIMIZATION FRAMEWORK
We use the IPS and WDP formulations to estimate

a solution SFF
 est for SFF

 ref
 by considering, 

SFF
 ref

≈SFF
 est=SWDS

 pred
+∆p

=SWDS
 pred

+(SFF
 ref

-SWDS
 pred

) 

=SWDS
 pred

+SIPS
 pred

, 

(4) 

where SWDS
 pred

 utilizes a priori information about the 

geometry to generate a coarse estimate of SFF
 ref

 and the 

coherent difference ∆p is estimated with SIPS
 pred

. An 

optimization framework, depicted in Fig. 2, was designed 

to determine SWDS
 pred

 in a preprocessing stage and SIPS
 pred

with a sparse optimization stage. 

Fig. 2. Optimization framework. 

The framework was generalized to use a constrained 

minimization routine to estimate appropriate parameter 

values for multiple types of non-isotropic scattering 

primitives (including the WDP utilized in this study). We 

note that the determination of rl
′ and the dependent

variables of 𝐷l
s,h

 in (3) can be a non-trivial problem with

many local minima, especially when a priori information 

is limited. Because our investigation is focused on the 

feasibility of reducing the number of IPSs, we bypass the 

constrained minimization in these experiments and 

provide parameter values for the WDPs based on a priori 

knowledge of the scattering geometry as inputs instead. 

The preprocessing stage synthesizes a far-field 

pattern from the WDPs and applies a global phase shift 

to the prediction that best matches the reference data. 

This is a necessary step in the event that the reference 
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data and WDP prediction from the analytic geometry 

have different phase origins. The phase-shifted WDP 

solution is then coherently subtracted from the SFF
 ref

 to 

yield ∆p. 

Shadowed regions are also determined in the 

preprocessing stage of the framework to prevent WDPs 

and IPSs from radiating through the boundaries of the 

target geometry. This is performed by tracing a vector 

from each primitive and scattering center to all far-field 

observation points and determining whether the ray 

intersects a facet of the geometry [11]. 

Modifications to support shadowing and the phase 

shift of the WDP solution augment the model in (4) with 

additional modulation terms such that, 

 S FF
 est
(k,r̂)=S WDS

 pred
+S IPS

 pred
 

S FF
 est
(k,r̂)=∑  

l

L

l=1

e jψSWDS
 pred

+∑  
n

N

n=1

SIPS
 pred

 

=∑  
l
Dl

s,h

L

l=1

e-j(2kr̂⋅rl
′-ψ)+∑  

n
γ
n

N

n=1

e-j2kr̂⋅rn
′
, 

(5) 

where  
l,n

 represent the shadowing and angle constraints 

applied to the WDSs and IPSs respectively and e jψ 

represents the phase shift applied to the WDP solution. 

In the sparse optimization stage, determining 

appropriate values of rn
′  and γ

n
 in (1) often relies on l1-

norm minimization techniques such as Basis Pursuit 

DeNoising (BPDN) in [4]. We note that BPDN provides 

a solution that minimizes the sum of the magnitudes of 

the complex coefficients, whereas an l0-norm minimized 

solution minimizes number of complex coefficients 

contributing to the solution (true sparsity). A solution 

arising from an l1-norm minimization routine is a good 

approximation to the l0-norm minimized solution when 

compressive sensing characteristics are met, namely that 

the basis set that is used to represent the signal satisfies 

the RIP. Again, determining adherence to the RIP can be 

computationally intractable for non-random matrices, 

therefore we proceed to apply this technique with the 

understanding that l1-norm minimized solutions may not 

strictly be the sparsest solution. In our framework, the 

SPGL1 library was leveraged to perform the BPDN 

optimization [9]. 

We note that primitive-based approaches are 

popular because generating far-field scattering from the 

primitives is straightforward. This is a key benefit and 

allows the optimization routine to iterate more quickly 

than in alternative approaches [10]. 

 

IV. NUMERICAL EXPERIMENTS 
We first apply our framework on a single flat plate, 

to demonstrate that the WDPs are implemented correctly 

and that BPDN can recover an adequate solution to ∆p. 

Next, the framework is applied to an angled plate, which 

includes a dihedral response that cannot be captured with 

the WDPs and shall be recovered with the IPSs. Figure 3 

illustrates the two test geometries that are used to 

validate our approach. 

The flat plate geometry is a 1m x 0.1m plate with 

zero thickness, while the angled plate geometry consists 

of a 1m x 0.125m and a 0.5m x 0.125m plate joined at 

one end to form a 90° angle (the latter dimension of each 

geometry is used to translate 2D echo width to 3D RCS). 

While the flat plate has no thickness, two variations of 

the angled plate were generated: one with zero thickness 

and one with 0.01m thickness. The significance of the 

angled plate variations is discussed in Section IV-B. 

 

 
 

Fig. 3. Flat plate and angled plate test geometries. 

 

For all cases, only the points on the z=0 plane were 

used since the far-field patterns were limited to the xy-

plane (elevation θ=90°, azimuth ϕ=[0, 360°]) and there 

is no variation in either geometry in the z-direction. In all 

cases, we calculated the TM-polarized far-field 

backscatter response at 6 GHz (λ=0.05m), ensuring that 

both targets are electrically large and amenable to high 

frequency approximations. Several mesh discretizations 

were generated to assess sparsity requirements for a 

given BPDN solution. Lastly, the BPDN parameters for 

error tolerance and maximum iterations were set to 10-3 

and 103, respectively, and were held constant over all 

experiments. 

The reference data SFF
 ref

 in our comparisons was 

generated with a MoM-based code to mitigate any 

contribution from measurement artifacts. We utilize a 

relative error norm as our metric for comparison, 

calculated as  ‖SFF
 ref

-S FF
 est
‖

2
‖SFF

 ref
‖

2
⁄k,r̂ , where ‖∙‖2 is the 

l2-norm. 

 
A. Flat plate 

Figure 4 illustrates our results from the flat plate 

geometry and compares the reference data against our 

method: the top plot compares the reference data SFF
 ref

 

against the diffraction solution from the preprocessing 

stage S WDS

 pred
 as well as the combined solution 

S FF
 est

=S WDS

 pred
+S IPS

 pred
; the middle plot illustrates the 

performance of the sparse optimization stage by 
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comparing the IPS solution S IPS
 pred

 with the difference 

pattern ∆p that the optimization attempts to recover; 

finally, the bottom plot depicts the coherent difference 

between SFF
 ref

 and S FF
 est

. 

 

 
 

Fig. 4. Reference, WDP and IPS solutions for a flat plate 

(magnitude). Discrepancies between the reference and 

WDP solution (top) are corrected with an IPS solution 

(middle) to yield low reconstruction error (bottom). 

 

S WDS

 pred
 was generated by defining two WDPs at the 

ends of the plate with α=0°. The singularities from each 

primitive sum to generate the specular lobe at ϕ=90°. We 

observe that the diffraction solution compares well with 

the reference data until the monostatic angle approaches 

the grazing angle of the flat plate (a known deficiency in 

GTD analytic solutions). The coherent difference from 

the preprocessing stage stays largely within the -20 and 

-40 dB range and yields a relative error of 0.0731. 

After S WDS

 pred
is generated, ∆p is supplied to BPDN to 

synthesize S IPS
 pred

. The result of the sparse optimization 

stage shows a well-converged solution and has a 

coherent difference that is largely below -60 dB. When 

the WDP and IPS solutions are combined to yield S FF
 est

, 

we see overlay agreement with SFF
 ref

. The combined 

solution achieves a relative error of 0.0011. 

In contrast to our combined method, traditional 

scattering center reconstruction of far-field data utilizes 

IPSs exclusively to reconstruct the reference data rather 

than the delta pattern. We can assess the efficacy of the 

traditional approach by calculating the relative error as  

a function of the number of IPSs used to perform the 

reconstruction, as shown in Fig. 5. Using a λ/3 sampling 

to generate the IPSs candidates provides N=61 points. 

We see that both methods require all points to achieve 

the lowest errors, and the traditional method achieves a 

relative error of 0.0019, compared to 0.0011 when the 

combined method is used (the WDP solution does not 

vary as a function of the number of IPSs). 

We also observe that when scattering centers with 

the smallest magnitudes are removed from contributing 

to the far-field pattern, the error of the traditional 

approach increases more quickly than the combined 

approach. In this example, the traditional approach 

exceeds the error of the WDP solution when fewer than 

N=60 points are used for the reconstruction. 

 

 
 

Fig. 5. Relative error norm of the flat plate. 
 

These results indicate that a solution generated from 

a combination of WDPs and IPSs can achieve a more 

accurate reconstruction than either of the two separately. 

Moreover, for any desired level of error, the combined 

solution is sparser than the traditional method.  
 

B. Angled plate 

The angled plate geometry provides a more 

challenging far-field pattern to reconstruct than the flat 

plate. In addition to the flat plate responses, a strong 

dihedral response will occur in the far-field azimuth 

sector ϕ=(180°, 270°). Knowing that the current 

implementation of WDPs cannot reconstruct the dihedral 

response, we limit their contributions to angles exclusive 

of the dihedral sector via  
l
 in (5). 

We note that even with the applied angle constraints, 

the WDPs may be inaccurate outside of the dihedral 

region, as well. According to [12], UTD WDPs fail near 

the shadow boundaries on concave shapes due to the  

fact that one of the WDPs is shadowed by obstructing 

geometry. The authors propose a separate type of 

diffraction coefficient to address dihedral effects by 

tracking rays that have multiple diffraction and reflection 

interactions on the target. Without introducing a third 

type of scattering center into the framework, we apply 

two additional WDPs located on the shared edge of the 

two plates (both with α=0°). This is analogous to two 

independent flat plates, where the additional WDPs 

complement the primitives on the open edges of the 

angled plate and compensate for the singularities that 
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arise from those primitives. In total, five WDPs are used: 

two for each flat plate and one for exterior corner of the 

angled plate and with α=90°. This arrangement yields a 

good approximation when compared to the reference 

data. The relative error norm over the far-field sector 

where the WDP solution is valid was calculated to be 

0.0992 and is similar to the relative error norm achieved 

by the WDP solution for the flat plate geometry. 

We note that IPSs will also encounter issues in 

pattern reconstruction of the angled plate due to the 

dihedral sector. We observed that the IPSs on a zero-

thickness angled plate failed to generate an adequate 

reconstruction since there is a large contrast in the far-

field response of the dihedral and non-dihedral regions. 

Implementing a finite thickness model, shown in Fig. 6, 

and enforcing shadow boundaries mitigated these 

effects: an optimization of the zero thickness geometry 

resulted in an error of 0.7210, while the finite thickness 

geometry achieved an error of 0.0477. 

However, even with the finite thickness geometry, 

additional non-physical aberrations are evident in the 

solution. We can observe the source of these errors by 

considering the angle sectors where each IPS contributes 

to the far-field. These sectors are discretized and plotted 

as vectors in Fig. 6. 
 

 
 

Fig. 6. Active IPSs for ϕ=[0°, 270°] (red vectors) and 

ϕ=[270°, 360°] (green vectors). 
 

The figure indicates that there are IPSs located in the 

interior region of the angled plate that contribute to both 

the dihedral and non-dihedral sectors of the far-field 

response. Moreover, the number of interior points 

contributing to the non-dihedral sector varies as the 

shadow boundary sweeps across the interior sector of the 

angled plate from ϕ=[116°,180°] and [270°, 296°]. This 

variation causes the discontinuities in the far-field 

pattern shown in Fig. 7 and we see that the severity of 

the discontinuities decrease when the rate of variation 

decreases, namely when angle approaches either of the 

normal incident angles (ϕ=180° and 270°). 

If the IPSs from the finite thickness model are  

used in the proposed method to reconstruct ∆p for the 

entire azimuth range ϕ=[0°, 360°], these discontinuities 

significantly degrade the reconstruction in the regions 

where the S WDS

 pred
 is already very good: under this 

arrangement, the method achieves a relative error norm 

of 0.0964 (0.0905 for λ/4, 0.0830 for λ/5). While it is  

a slight improvement over the solution generated by 

WDPs alone, it does not provide a better solution than 

the traditional method. We speculate that, in addition to 

the discontinuities, the dynamic range of the delta  

pattern increases because the WDPs are restricted from 

contributing to the dihedral sector of SFF
 ref

. These effects 

ultimately make ∆p more difficult to reconstruct with 

IPSs.  
 

 
 

Fig. 7. Discontinuities in non-dihedral sector of IPS 

solution due to interior IPS contributions. 

 

As an alternative, we enforce additional constraints 

on the finite thickness model via  
n
 such that the interior 

and exterior IPSs only contribute to the non-dihedral and 

dihedral sectors, respectively. Using this strict separation, 

S FF
 est

 from the combined method yields an improved 

relative error norm of 0.0238 and exceeds the performance 

of the traditional method. The results of this experiment 

are shown in Fig. 8.  

 

 
 

Fig. 8. Reference, WDP and IPS solutions for an angled 

plate (magnitude only). Discrepancies between the 

reference data and WDP solution (top) are corrected with 

an IPS solution (middle) to yield low reconstruction error 

(bottom). 
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The figure also clearly shows the large dynamic 

range of ∆p where much of the dihedral sector stays 

above 0 dB and non-dihedral sector stays largely below 

-20 dB. With our proposed method of synthesizing S FF
 est

, 

the errors achieved mostly fall below -20 dB.  

Mirroring the analysis performed on the flat plate, 

we assess the trade between relative error norm and the 

number of IPSs used in the reconstruction of SFF
 ref

 and ∆p, 

shown in Fig. 9. We note that the figure includes an 

additional dataset to show that, while the strict separation 

of the contributions of the inner IPSs to the dihedral 

sector and the outer IPSs to the non-dihedral sector  

was an effective strategy for synthesizing ∆p, it was not 

effective when the IPSs were used to reconstruct SFF
 ref

. 

We speculate that the configuration that enforces strict 

separation does not provide an adequate number of IPSs 

to generate the narrow lobes that are present near the 

edges of the dihedral region in the far-field reference 

pattern. Conversely, the more permissive shadowing 

scheme provides enough of these point scatterers to 

generate narrow (but discontinuous) peaks to match  

the far-field reference pattern well, but detrimentally 

impacts the solution when they are used to match ∆p 

(which has lower and wider lobes). 

We also observe a discontinuity in the solutions  

that rely exclusively on IPSs whereas the flat plate  

tests exhibited a monotonically decreasing error. This is 

because the magnitudes of the coefficients supporting 

the dihedral sector are significantly higher than those 

supporting the non-dihedral sector. For example, in the 

test case where ∆p was recovered via IPSs only, the 

removal of the lowest magnitude coefficients from 

reconstruction will incrementally degrade the non-

dihedral sector and only after the 39th largest coefficient 

is removed will the dihedral reconstruction degrade. 

 

 
 

Fig. 9. Relative error norm of the angled plate. 

 

Overall, the results are consistent with those in the 

flat plate experiment. That is, the traditional approach 

that utilizes only IPSs to reconstruct far-field reference 

data is unable to reach the error levels that are achieved 

with the proposed approach. Moreover, if the smallest (in 

magnitude) non-zero coefficients are discarded from the 

reconstruction, the degradation of the solution from the 

proposed method is more gradual than the traditional  

method. 

Our numerical experiments are summarized in 

Table 1. We see with both geometries that a lower error 

is achieved when combining a WDP solution with an  

IPS solution to the delta pattern instead of the relying 

exclusively on WDPs or IPSs to reconstruct the far-field 

data. In the case of the angled plate, the result required 

manually setting boundaries on the range of angles 

where each primitive type contributes to the far-field 

pattern. Nonetheless, this is a valuable insight—if the 

primary goal is to find a compact representation of far-

field data, this approach would prove to be very useful. 

With the proposed method, we can achieve a lower error 

with approximately the same number of point scatterers 

(WDPs and IPSs). Likewise, we have solutions that 

degrade more slowly with respect to how many IPSs are 

used to reconstruct the pattern when the IPSs are applied 

to a delta pattern rather than the far-field data. 

 

Table 1: Relative error and (total point scatterer count) 

of λ/3 discretized geometries 
 Flat Plate Angled Plate* 

WDS Only 0.0731 (2) 0.0992 (5) 

IPS Only 0.0019 (61) 0.0477 (184) 

Combined 0.0011 (63) 0.0238 (189) 

* WDS case evaluated for non-dihedral sector only. 

 

V. SPARSE RECONSTRUCTION 

CONSIDERATIONS FOR COMPRESSIVE 

SENSING 
In addition to investigating the reconstruction accuracy 

of the proposed method, we seek to understand how well 

IPSs perform as a sparse basis in the context of CS. With 

both the flat plate and angled plate geometries, we tested 

for solution convergence and robustness.  

Figure 10 depicts the results from multiple 

discretizations of the flat plate geometry and how their 

solutions degrade as the weakest scattering centers are 

incrementally removed from the solution. 

CS literature states that the recovery of signal  

is robust to noise and reconstruction accuracy should 

degrade gracefully with a given basis set due to the RIP 

(more specifically, the Null Space Property) [13]. We 

can see that the IPS basis can used to reconstruct ∆p in 

the proposed method and reconstruct SFF
 ref

 in the standard 

method. We noted previously that the degradation of S FF
 est

 

in the proposed method is more gradual than the far-field 

reconstruction in the standard method and we see  

that this remains true for other discretizations as well. 

However, the data also indicates that the solutions 

generated by the BPDN are not optimally sparse. The 

delta pattern and far-field pattern do not vary with 

respect to discretization, yet the number of IPSs required 
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to reconstruct those patterns does vary with respect to  

discretization. 

We also observe that the numbers of candidate IPSs 

are N=61, 81 and 101 for λ/3, λ/4 and λ/5, respectively. 

At 6 GHz, the plate is 20 λ long and the solutions are 

effectively using all of the available scattering centers to 

determine a solution, even though it is known that a 

sparser solution exists (because the coarse discretizations 

are able to recover an equally accurate solution with 

fewer IPSs). While BPDN determines solutions with the 

smallest  |γ
n
|n , it does not guarantee a solution that 

minimizes the cardinality of γ unless other CS criteria are 

met. These findings suggest that a basis set from IPSs 

does not satisfy the RIP. 

 

  
 

Fig. 10. Robustness of proposed and traditional method 

solutions for λ/3 to λ/5 discretizations of the flat plate. 

 

A similar analysis is performed on the data for the 

angled plate dihedral region, depicted in Fig. 11. Again, 

the number of IPSs required to reach a given level of 

error depends on the number of available IPSs. The  

rate of degradation is different from the flat plate  

case, however: the presence of longer tails on the 

reconstructions with the proposed method suggest that 

they have converged and while they are not ideal and 

optimally sparse solutions, they seem to be sparser and 

more robust than the reconstructions with the traditional 

method. 

 

 
 

Fig. 11. Robustness of proposed and traditional method 

solutions for λ/3 to λ/5 discretizations of the angled plate. 

 

These numerical experiments show that, while the 

technique is successful in generating point scatterer 

based (WDP and IPS) representations of the targets, 

there may be limited utility as a basis for compressive 

sensing applications. The results show empirically that 

when a sparse representation of the target is used  

to generate far-field patterns (the traditional approach), 

perturbations in the sparse representation will introduce 

excessively large errors for the purpose of interpolation 

and extrapolation. The sparsity is slightly improved 

when IPS are employed to reconstruct delta patterns (the 

proposed approach), but their efficacy seems to be 

geometry dependent. 

These initial results reveal areas that merit 

additional investigation. It would be prudent to integrate 

solutions for dihedral scattering mechanisms [14] into 

the framework which would allow the IPSs to recover a 

more simplified delta pattern. Additionally, we observed 

that the number of shadowed IPSs can vary rapidly and 

would introduce unwanted discontinuities in synthesized 

solution. Tapering or adjusting the angles that an IPS 

contributes to may address this issue and would improve 

how the IPSs perform on concave targets. Lastly, the 

optimization framework can be expanded to support 

multiple frequencies, multiple polarizations, non-planar 

observation geometries and bistatic quantities to 

possibly aid the convergence of the optimization routines 

and expand its applicability to a wider variety of test 

cases. 

 

VII. CONCLUSION 
Using WDPs in conjunction with IPSs to reconstruct 

far-field patterns shows merit in simple cases and  

when they are applied judiciously. In our numerical 

experiments, we show that this approach can reduce the 

overall number of scattering centers required to replicate 

the scattering response of a flat and a right-angled plate. 

We also observed that l1-norm minimization techniques 

may have difficulty finding maximally sparse solutions 

when IPSs are used as a basis set. Despite this, 

synthesized solutions are more robust when they are used 

to reconstruct a coherent difference pattern rather than 

the far-field data. 
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