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Abstract ─ A novel PO method is proposed to analyze 

the uncertain scattering problems. The algorithm starts 

with modeling the target with a variable shape by using 

the non-uniform rational B-spline (NURBS) scheme. 

Then the scattering far-field is expressed in terms of the 

variable parameters in NURBS. It should be noted that 

the perturbation approach is applied to describe the 

uncertainty of the varying shapes. Compared with the 

traditional Monte Carlo (MC) method, only a few matrix 

equations are needed to be solved, so the efficiency will 

increase greatly. At last, several numerical examples are 

given to validate the accuracy and efficiency of the 

proposed method.  

 

Index Terms─ Electromagnetic scattering, perturbation 

approach, PO, varying geometric shape. 
 

I. INTRODUCTION 
In the field of computational electromagnetic, the 

methods to obtain EM scattering characteristics for 

certain targets have been well studied [1-6]. However, 

the uncertainty for modeling electromagnetic scattering 

of real targets also needs to be focused due to the 

manufacturing tolerance, environmental influence or 

insufficient information. Furthermore, the uncertainty  

of EM scattering characteristics is a key point of radar 

system design for target detection. In fact, the 

uncertainty of the target geometry is often difficult to 

describe. It is hard to get the EM scattering characteristic 

for the target with a variable shape. Therefore, it is 

significant to develop an efficient method for solving the 

scattering problems of targets with uncertain geometry 

structures. 

A lot of works have been done in the past decades 

to analyze the uncertainty problems [7-22]. The Monte 

Carlo (MC) simulation is one of the most popular 

methods to evaluate the impact of uncertainty [15-16]. In 

this method, a series of samplings are chosen to describe 

the variation of the uncertain problems, thus an uncertain 

problem can be divided into several certain problems, 

which is easy and direct. Based on this, the computational 

efficiency of the MC method will become worse with  

the number of sampling points increasing [17]. Then a 

generalized polynomial chaos method [18] is proposed 

to further accelerate the convergence, in which the 

random variables can be expanded by a series of 

orthogonal polynomials. There are two common schemes 

in this method, namely Stochastic Galerkin (SG) approach 

[9-11,21-22] and stochastic collocation (SC) approach 

[14,19,20]. When the order of polynomial becomes 

higher, both the SG and SC method will result in a huge 

coupling system. In [26], a surrogate modeling technique 

for electromagnetic scattering analysis of objects with 

variable shapes is presented by using the method of 

moments, but this method is not easy to be realized due 

to the huge consumption of computational resources [27-

32]. Therefore, it is urgent and necessary to develop   

an efficient tool to analyze the uncertain scattering 

problems for three-dimensional objects.  

In this paper, the perturbation method is introduced 

into the physical optics (PO) method [27] to solve the 

uncertainty in scattering problems. Firstly, the varying 

shape on the surface of the target is modeled by using the 

non-uniform rational B-spline (NURBS) scheme [23-24]. 

In this way, the geometric uncertainty can be described 

in terms of several random variables. Then the scattering 

far-fields can be rewritten by the Taylor series, which is 

constructed by the random variables. As a result, the 

geometry can be easily changed by adjusting the variables. 

Numerical results are compared with the traditional MC 

method, which demonstrates the accuracy and efficiency 

of the proposed method. 

The remainder of this paper is organized as follows. 

In Section 2, the theory and the formulations are given. 
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Three numerical experiments are presented in Section 3 

to show the efficiency of the proposed method. Section 

4 concludes this paper. 

 

II. THEORY AND FORMULATIONS 

A. NURBS surface modeling 

A plane with 0.74m*1.15m is considered. The 

number of control points in the u direction (i.e., the    

x-axis) is set to seven, and the number of control points 

in the v direction (i.e., the y-axis) is set to nine. All the 

control points are numbered. The first control point is 

labeled P00, and the last control point is labeled P68. So 

the NURBS surface can be redrawn by MATLAB as 

shown in Fig. 1. 
 

 
 

Fig. 1. NURBS surface with controlling points. 
 

A new plane can be got by turning the z coordinate 

of P3,2 to -0.4 and the z coordinate of P3,6 to 0.4, which 

is shown in Fig. 2. It can be seen that as the two points 

of P3,2 and P3,6 changes, the surface shape closer to the 

two control points is bent. But the other parts far away 

from the two points on the plane are not deformed. 
 

 
 

Fig. 2. Reconstructed surface with varying shapes. 
 

Because of the influence of the external 

environment or the other factors, the geometrical shape 

of the target is uncertainty. The varying geometrical 

shape will directly cause the varying of target’s EM 

scattering characteristics. As shown in Fig. 3, the side 

length of the cube model varies in the interval of 

 ,l l l l   . 

 

 
 

Fig. 3. The cube model with uncertainty geometrical 

shape. 

 

B. Relationship between variables and equations 

An object with a certain size of cα  is considered. 

The largest varied size is assumed as  . That is, the 

range of the size for the object is ,c c    α α . 

The far-field scattering field of a PEC object can be 

calculated as follows: 
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The above formula can be written as: 

   I IE α b α ,              (2) 

where 
I

α  represents any point in ,c c    α α . 

And then the equation (3) can be obtained by using the 

first-order Taylor series to expand the equation (1) at the 

point 
c
α : 
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where n is the number of random variables and 
i  is 

largest varied size in the i-th random variable, there is: 

     
 c I c I  E E b α b ,           (4)  

where IE  represents the change of the far-field 

scattering field. c
E  represents the far-field scattering 

field of the model with the size of cα , namely: 

 c cE b α .               (5) 

Then the change of the far-field scattering field can 

be expressed as: 
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where   /c

i b α  is always the same for different 

varied sizes, thus the system just needs to be solved once. 

Compared with the Monte Carlo method, much more 

time can be saved by the proposed method in this paper. 

When an object is modeled with a NURBS surface, 

any point on the object can be represented by: 

,
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where 
, ( , )i jR u v  is a piecewise rational basis function. 

ijP  is a control point, and the x, y, and z coordinates   

of the control point are represented by , ,ijx ijy ijzP P P  

respectively. Then the relationship between the 

coordinates of the point on the object and the coordinates 

of the control point is: 
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where , ,x y zS S S  represent the x, y, z coordinates of the 

point on the object. And then the shape of the object can 

be controlled by adjusting the coordinates of the control 

points. All the x, y, and z coordinates of the control 

points are mutually independent. In the paper, the x, y, 

and z coordinates of the control point , ,ijx ijy ijzP P P  are 

can be seen as random variables. The derivative of the 

equation (1) can be written as: 
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where 
i  represents the random variable , ,ijx ijy ijzP P P , 

and A is the area of the triangle. The derivation of area 

i

A
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where a,b,c is the side length of the triangle mesh.
2 / ia   , 2 / ib    and 2 / ic    are derived as:  
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where 
1S ,

2S  and 
3S  are the three vertices of triangle 

mesh. In this way, the deviation of the scattering field

E  can be obtained by: 
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It should be noted the first-order Taylor series is 

used to expand the formula of far-field scattering field at 

the mean value. Therefore, the error will be introduced 

into the approximate calculation formula. More 

specifically, the error will increase with varying interval 

of the shape becomes bigger. The experience indicates 

that the interval should be less then 0.4 . As shown in 

Eq. (4), the change of the far-field scattering field should 

be calculated only once for each i . Therefore, the 

computation complexity has a linear relation to the 

number of random variables. In other words, the equation 

should be solved n (number of random variables) times 

totally for the uncertain problems. However, for the MC 
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method, the computational efficiency will decrease as 

the number of sampling points increases. Generally, the 

number of sampling points in the MC method is far 

greater than the number of random variables in the 

proposed method. Therefore, the computational time can 

be saved a lot when compared with the traditional MC 

method. 
 

III. NUMERICAL RESULTS 
In this section, a series of examples are presented to 

demonstrate the efficiency of the proposed method. 
 

A. The bistatic RCS for a PEC slab 

Firstly, a slab model with uncertain side length is 

analyzed with the proposed method at the frequency of 

1GHz. The side length of the slab model is set as [1.91m, 

2.09m], as shown in Fig. 4. To verify the accuracy of the 

proposed method for uncertainty problems, the result 

simulated by the MC method with 1000 sampling points 

is used as a reference [39-40]. The incident angle of 

plane wave is set at , . The bistatic 

RCS results are compared in Fig. 5 between the MC 

method and the proposed method. It can be seen that 

there is a good agreement between them. Moreover, the 

comparisons of CPU time cost between the proposed 

method and MC method with 1000 samples are listed in 

Table 1.  
 

 
 

Fig. 4. The slab model with uncertain side length. 
 

 
 

Fig. 5. Bistatic RCS of a slab model with uncertain side 

length. 

 

Table 1: Comparisons of CPU Time between the 

Proposed Method and MC Method with 1000 Samples 

Method CPU Time (s) 

Proposed method 41 

Monte Carlo 1158 

 
B. The monostatic RCS for a PEC aircraft  

Secondly, the analysis of monostatic RCS is taken 

for a PEC aircraft at the frequency of 1.0 GHz. As shown 

in Fig. 6 (a), the nose of aircraft is along y axis. The 

varying length of wings is set as the uncertain scattering 

property of the aircraft model with the variation of 

. It can be seen from Fig. 6 (b) that there 

are eight control points to describe the varying shape   

of this aircraft. The incident angle of plane wave is    

set at , . As shown in Fig. 7, the 

monostatic RCS results are given and it can be found that 

there is a good agreement between the MC method and 

the proposed method. Moreover, the comparisons of 

CPU time cost between the proposed method and MC 

method with 1000 samples are listed in Table 2.  

 

 
(a) 

 
(b) 

 
Fig. 6. (a)The aircraft model with varying length of 

wings. (b) The aircraft model constructed by NURBS 

Approach (Points 1-8 are used to control the varying of 

the wings length). 

 
Table 2: Comparisons of CPU time between the 

proposed method and MC method with 1000 samples 

Method CPU Time (s) 

Proposed method 2817 

Monte Carlo 81095 
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Fig. 7. Monostatic RCS of an aircraft model with varying 

length of wings.  

 

C. The monostatic RCS for a PEC missile over a 

rough medium sea surface 

At last, we consider the scattering from a missile 

over a rough medium sea surface at the frequency of 1 

GHz. As shown in Fig. 8 (a), the nose of missile is along 

z axis. The varying length of wings is set as the uncertain 

scattering property of the missile model with the 

variation of [2.9m, 3.1m]. As shown in Fig. 8 (b), there 

are eight control points to describe the varying shape of 

this missile. The incident angle of plane wave is set    

at , . As shown in Fig. 9, the 

monostatic RCS results are given and it can be found that 

there is a good agreement between the MC method and 

the proposed method. Moreover, the comparisons of 

CPU time cost between the proposed method and MC 

method with 1000 samples are listed in Table 3. 
 

 
(a) 

 
(b) 

 

Fig. 8. (a) The missile model with varying length of 

wings over a rough medium sea surface. (b) The aircraft 

model constructed by NURBS Approach (Points 1-8 are 

used to control the varying of the wings length). 

 
 

Fig. 9. Monostatic RCS of a missile model with varying 

length of wings. 
 

Table 3: Comparisons of CPU time between the 

proposed method and MC method with 1000 samples 

Method CPU Time (s) 

Proposed method 502 

Monte Carlo 18459 
 

IV. CONCLUSION 
In this paper, the perturbation approach is used to 

analyze the uncertain scattering from electrically large 

targets. By using the non-uniform rational B-spline 

(NURBS) scheme, the varying geometrical shape can be 

modeled with several variables. In this way, the 

scattering far-fields can be calculated by the PO method. 

Less matrix equations are needed to be solved when 

compared with the traditional Monte Carlo method.  
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